Stoichiometric conversion of oxygen to superoxide anion during the respiratory burst in neutrophils. Direct evidence by a new method for measurement of superoxide anion with diacetyldeuteroheme-substituted horseradish peroxidase - PubMed (original) (raw)

. 1986 Sep 5;261(25):11444-7.

Free article

Stoichiometric conversion of oxygen to superoxide anion during the respiratory burst in neutrophils. Direct evidence by a new method for measurement of superoxide anion with diacetyldeuteroheme-substituted horseradish peroxidase

R Makino et al. J Biol Chem. 1986.

Free article

Abstract

Extracellular release of superoxide anion (O-2) and hydrogen peroxide (H2O2) during the respiratory burst of porcine and human neutrophils was studied by using diacetyldeuteroheme-substituted horseradish peroxidase as a trapping agent for these oxygen derivatives. The method permitted simultaneous measurement of oxygen consumption and formation of both O-2 and H2O2 in a single reaction mixture. When neutrophils were stimulated with phorbol myristate acetate in the presence of the heme-substituted peroxidase, a rapid accumulation of compound III, a complex of the enzyme with O-2, was observed accompanying an increase in oxygen consumption. During the process, amounts of compound III formed and oxygen consumed were stoichiometric, and no compound II, an indicator of H2O2 formation, was observed. These results establish that neutrophils stimulated with the phorbol ester produce exclusively O-2 as the primary oxygen metabolite and release it into the extracellular medium. When a limited amount of opsonized zymosan was used as the stimulus, compound III formation was also observed but it ceased at an early stage of oxygen consumption. When a sufficient amount of azide was included in the system, however, formation of compound II was noted in the later stage of oxygen consumption. The findings suggest that O-2, formed during phagocytosis, is converted to H2O2 within phagosomes and then diffuses out into the extracellular medium when its decomposition by catalase and/or peroxidases is blocked by azide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances