Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator - PubMed (original) (raw)
Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator
J M Ward et al. Mol Gen Genet. 1986 Jun.
Abstract
Several versatile, multi-copy, promoter-probe plasmid vectors have been constructed that replicate in a wide range of Streptomyces species. Transcriptional activity is detected by the expression of a promoter-less aminoglycoside phosphotransferase gene (neo) derived from the transposon Tn5; expression of this gene confers kanamycin and neomycin resistance on Streptomyces lividans. An efficient transcriptional terminator from E. coli phage fd has been inserted upstream of the neo coding region to prevent significant transcriptional read-through from vector promoters. A translational stop codon situated downstream from the site(s) used for cloning and preceding and in frame with the ATG start codon of the neo gene ensures the detection of transcriptional, rather than translational, fusions. Relative promoter strengths can be determined by gradient plate assays of kanamycin resistance, by measuring the amount of aminoglycoside phosphotransferase produced or by estimating neo mRNA synthesised. The high copy number of the vectors facilitates the rapid isolation and characterisation of promoter-active fragments and convenient restriction sites are available for DNA sequencing and S1 mapping of cloned inserts. Some derivatives contain a polylinker that facilitates the insertion, excision and analysis of cloned fragments and which enhances the use of these plasmids as general cloning vectors.
Similar articles
- Construction and characterization of promoter-probe vectors for Corynebacteria using the kanamycin-resistance reporter gene.
Cadenas RF, Martín JF, Gil JA. Cadenas RF, et al. Gene. 1991 Feb 1;98(1):117-21. doi: 10.1016/0378-1119(91)90113-p. Gene. 1991. PMID: 1849494 - Cloning and expression of Mycobacterium bovis BCG DNA in "Streptomyces lividans".
Kieser T, Moss MT, Dale JW, Hopwood DA. Kieser T, et al. J Bacteriol. 1986 Oct;168(1):72-80. doi: 10.1128/jb.168.1.72-80.1986. J Bacteriol. 1986. PMID: 3020007 Free PMC article. - A bifunctional Streptomyces-E. coli promoter-probe vector.
Asturias JA, Liras P, Martin JF. Asturias JA, et al. FEMS Microbiol Lett. 1990 Mar 1;56(1-2):65-8. doi: 10.1016/0378-1097(90)90125-a. FEMS Microbiol Lett. 1990. PMID: 2185129 - Review of the Streptomyces lividans/vector pIJ702 system for gene cloning.
Gusek TW, Kinsella JE. Gusek TW, et al. Crit Rev Microbiol. 1992;18(4):247-60. doi: 10.3109/10408419209113517. Crit Rev Microbiol. 1992. PMID: 1524674 Review. - Transposition and transduction of plasmid DNA in Streptomyces spp.
Hahn DR, Solenberg PJ, McHenney MA, Baltz RH. Hahn DR, et al. J Ind Microbiol. 1991 Jun;7(4):229-34. doi: 10.1007/BF01577649. J Ind Microbiol. 1991. PMID: 1369329 Review.
Cited by
- Localization of Pyranose 2-Oxidase from Kitasatospora aureofaciens: A Step Closer to Elucidate a Biological Role.
Virginia LJ, Peterbauer C. Virginia LJ, et al. Int J Mol Sci. 2023 Jan 19;24(3):1975. doi: 10.3390/ijms24031975. Int J Mol Sci. 2023. PMID: 36768294 Free PMC article. - Cloning and Expression of Metagenomic DNA in Streptomyces lividans and Its Subsequent Fermentation for Optimized Production.
Rebets Y, Kormanec J, Lutzhetskyy A, Bernaerts K, Anné J. Rebets Y, et al. Methods Mol Biol. 2023;2555:213-260. doi: 10.1007/978-1-0716-2795-2_16. Methods Mol Biol. 2023. PMID: 36306090 - Streptomyces as Microbial Chassis for Heterologous Protein Expression.
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Hwang S, et al. Front Bioeng Biotechnol. 2021 Dec 21;9:804295. doi: 10.3389/fbioe.2021.804295. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34993191 Free PMC article. Review. - Differential regulation of undecylprodigiosin biosynthesis in the yeast-scavenging Streptomyces strain MBK6.
Bikash B, Vilja S, Mitchell L, Keith Y, Mikael I, Mikko MK, Jarmo N. Bikash B, et al. FEMS Microbiol Lett. 2021 May 6;368(8):fnab044. doi: 10.1093/femsle/fnab044. FEMS Microbiol Lett. 2021. PMID: 33881506 Free PMC article. - Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans.
Valverde JR, Gullón S, Mellado RP. Valverde JR, et al. BMC Microbiol. 2018 Jun 14;18(1):59. doi: 10.1186/s12866-018-1199-3. BMC Microbiol. 2018. PMID: 29898665 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1973 Nov;70(11):3240-4 - PubMed
- Annu Rev Genet. 1979;13:319-53 - PubMed
- J Bacteriol. 1985 Sep;163(3):965-72 - PubMed
- Mol Gen Genet. 1982;185(2):223-8 - PubMed
- Nucleic Acids Res. 1981 Jul 10;9(13):2989-98 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical