Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus - PubMed (original) (raw)
Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus
E S Coen et al. Cell. 1986.
Abstract
The pallida gene of A. majus encodes a product required for the synthesis of red flower pigment. We have shown that the unstable pallida(recurrens) mutation is due to the insertion of the Tam3 transposable element near the promoter of the gene. Imprecise excision of Tam3 alters pallida gene expression and generates new spatial patterns or different intensities of flower pigmentation. Distinct spatial patterns may also result from rearrangements induced by Tam3 that alter the relative position of the pallida gene. Changes in Tam3 structure or position result in new unstable phenotypes. These findings suggest that genes may be rendered genetically hypervariable as a consequence of transposable element insertion and excision.
Similar articles
- Genetic interactions underlying flower color patterns in Antirrhinum majus.
Almeida J, Carpenter R, Robbins TP, Martin C, Coen ES. Almeida J, et al. Genes Dev. 1989 Nov;3(11):1758-67. doi: 10.1101/gad.3.11.1758. Genes Dev. 1989. PMID: 2558047 - Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus.
Hudson AD, Carpenter R, Coen ES. Hudson AD, et al. Plant Mol Biol. 1990 May;14(5):835-44. doi: 10.1007/BF00016516. Plant Mol Biol. 1990. PMID: 1966387 - Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin.
Uchiyama T, Fujino K, Ogawa T, Wakatsuki A, Kishima Y, Mikami T, Sano Y. Uchiyama T, et al. Plant Physiol. 2009 Nov;151(3):1557-69. doi: 10.1104/pp.109.142356. Epub 2009 Sep 16. Plant Physiol. 2009. PMID: 19759347 Free PMC article. - Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.
Martin C, Lister C. Martin C, et al. Dev Genet. 1989;10(6):438-51. doi: 10.1002/dvg.1020100605. Dev Genet. 1989. PMID: 2557989 Review. - How to establish a mutually beneficial relationship between a transposon and its host: lessons from Tam3 in Antirrhinum.
Wang S, Koide Y, Kishima Y. Wang S, et al. Genes Genet Syst. 2022 Dec 17;97(4):177-184. doi: 10.1266/ggs.22-00063. Epub 2022 Nov 11. Genes Genet Syst. 2022. PMID: 36372414 Review.
Cited by
- The Tc3 family of transposable genetic elements in Caenorhabditis elegans.
Collins J, Forbes E, Anderson P. Collins J, et al. Genetics. 1989 Jan;121(1):47-55. doi: 10.1093/genetics/121.1.47. Genetics. 1989. PMID: 2537252 Free PMC article. - Somatic excision of the Mu1 transposable element of maize.
Doseff A, Martienssen R, Sundaresan V. Doseff A, et al. Nucleic Acids Res. 1991 Feb 11;19(3):579-84. doi: 10.1093/nar/19.3.579. Nucleic Acids Res. 1991. PMID: 1849263 Free PMC article. - A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus.
Robbins TP, Carpenter R, Coen ES. Robbins TP, et al. EMBO J. 1989 Jan;8(1):5-13. doi: 10.1002/j.1460-2075.1989.tb03342.x. EMBO J. 1989. PMID: 16453869 Free PMC article. - Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution.
Lucibelli F, Valoroso MC, Aceto S. Lucibelli F, et al. Int J Mol Sci. 2022 Jul 27;23(15):8299. doi: 10.3390/ijms23158299. Int J Mol Sci. 2022. PMID: 35955429 Free PMC article. Review. - Maize Transposable Elements Ac/Ds as Insertion Mutagenesis Tools in Candida albicans.
Mielich K, Shtifman-Segal E, Golz JC, Zeng G, Wang Y, Berman J, Kunze R. Mielich K, et al. G3 (Bethesda). 2018 Mar 28;8(4):1139-1145. doi: 10.1534/g3.117.300388. G3 (Bethesda). 2018. PMID: 29378819 Free PMC article.