Receptor-mediated gene delivery and expression in vivo - PubMed (original) (raw)

. 1988 Oct 15;263(29):14621-4.

Affiliations

Free article

Receptor-mediated gene delivery and expression in vivo

G Y Wu et al. J Biol Chem. 1988.

Free article

Abstract

A soluble DNA carrier system was used to target a foreign gene specifically to liver in vivo via asialoglycoprotein receptors. The DNA carrier was prepared consisting of a galactose-terminal (asialo-)glycoprotein, asialoorosomucoid (AsOR), covalently linked to poly-L-lysine. The conjugate was complexed in a 2:1 molar ratio (based on AsOR content of the conjugate) to the plasmid, pSV2 CAT, containing the gene for the bacterial enzyme chloramphenicol acetyltransferase (CAT). Intravenous injection of [32P]plasmid DNA complexed to the carrier demonstrated specific hepatic targeting with 85% of the injected counts taken up by the liver in 10 min compared to only 17% of the counts when the same amount of [32P]DNA alone was injected under identical conditions. Targeted pSV2 CAT DNA was detected at a level of 1.0 ng/g liver by hybridization of a [32P]pSV2 CAT cDNA probe to rat liver DNA extracted 24 h after intravenous injection of AsOR-poly-L-lysine-DNA complex containing 1.0 mg of DNA. Homogenates of livers taken 24 h after injection of the complex revealed that the targeted CAT gene was functional as reflected by the detection of CAT activity (approximately 4 microunits/mg protein). Livers from control animals that received individual constituents of the complex produced no CAT activity. Simultaneous injection of excess AsOR to compete with the AsOR-poly-L-lysine-DNA complex for uptake by the liver inhibited CAT gene expression. Assays for CAT activity in other organs (spleen, kidney, lungs) failed to demonstrate any activity in these organs. This new soluble DNA carrier system can permit targeted delivery of foreign genes specifically to liver with resultant foreign gene expression in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources