Two dominant-acting selectable markers for gene transfer studies in mammalian cells - PubMed (original) (raw)
Two dominant-acting selectable markers for gene transfer studies in mammalian cells
S C Hartman et al. Proc Natl Acad Sci U S A. 1988 Nov.
Abstract
We report the development of two dominant-acting genetic markers useful for monitoring gene transfer in mammalian cells that are based on prokaryotic genes encoding key steps in the synthesis of the essential amino acids, tryptophan and histidine. Under appropriate conditions, expression of these genes obviates the nutritional requirements for their respective amino acid products. Expression of the trpB gene of Escherichia coli, which encodes the beta subunit of tryptophan synthase (EC 4.2.1.20), allows mammalian cell survival and multiplication in medium containing indole in place of tryptophan. The hisD gene of Salmonella typhimurium encodes histidinol dehydrogenase (EC 1.1.1.23), which catalyzes the two-step NAD+-dependent oxidation of L-histidinol to L-histidine. In medium lacking histidine and containing histidinol, only mammalian cells expressing the hisD product survive. The selection is a double one in that the provided precursor histidinol is itself toxic to animal cells through its inhibition of histidyl-tRNA synthetase; thus, the dehydrogenase both removes an inhibitor and forms a required end product. Alternatively, the his selection may be carried out under conditions in which the dehydrogenase serves mainly to detoxify histidinol. For either the trp or his selections the substitute nutrient (indole or histidinol) is readily available, inexpensive, stable, permeable to cells, and convertible to the end product in a step controlled by a single gene. Vectors based upon murine retrovirus and papovavirus backbones have been successfully employed for both genes, allowing selection in a range of cell types, including 3T3, CV-1, and HeLa. These dominant selective schemes should provide generally useful and inexpensive alternatives to others currently in use, such as the gpt, neo, hygro, dhfr, and tk selections.
Similar articles
- Transgenic mice for the establishment of histidinol-resistant embryonic fibroblast feeder layers.
Tucker RM, Burke DT. Tucker RM, et al. FASEB J. 1996 Dec;10(14):1641-5. doi: 10.1096/fasebj.10.14.9002557. FASEB J. 1996. PMID: 9002557 - [Metabolic regulation of the histidine operon in Escherichia coli and Salmonella typhimurium].
Perel'man BV, Shakulov RS, Smirnov IuV, Lisenkov AF, Astvatsaturiants GV. Perel'man BV, et al. Mol Gen Mikrobiol Virusol. 1988 Jan;(1):36-40. Mol Gen Mikrobiol Virusol. 1988. PMID: 2833692 Russian. - Patterns of product inhibition of a bifunctional dehydrogenase; L-histidinol:NAD+ oxidoreductase.
Bürger E, Görisch H. Bürger E, et al. Eur J Biochem. 1981 May;116(1):137-42. doi: 10.1111/j.1432-1033.1981.tb05311.x. Eur J Biochem. 1981. PMID: 7018902 - Amino acid metabolism.
Truffa-Bachi P, Cohen GN. Truffa-Bachi P, et al. Annu Rev Biochem. 1973;42(0):113-34. doi: 10.1146/annurev.bi.42.070173.000553. Annu Rev Biochem. 1973. PMID: 4151747 Review. No abstract available. - L-Histidinol Dehydrogenase as a New Target for Old Diseases.
Monti SM, De Simone G, D'Ambrosio K. Monti SM, et al. Curr Top Med Chem. 2016;16(21):2369-78. doi: 10.2174/1568026616666160413140000. Curr Top Med Chem. 2016. PMID: 27072690 Review.
Cited by
- Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors.
Inoue N, Russell DW. Inoue N, et al. J Virol. 1998 Sep;72(9):7024-31. doi: 10.1128/JVI.72.9.7024-7031.1998. J Virol. 1998. PMID: 9696794 Free PMC article. - The chicken HMG-17 gene is dispensable for cell growth in vitro.
Li Y, Dodgson JB. Li Y, et al. Mol Cell Biol. 1995 Oct;15(10):5516-23. doi: 10.1128/MCB.15.10.5516. Mol Cell Biol. 1995. PMID: 7565703 Free PMC article. - Generation of a new adenovirus type 12-inducible fragile site by insertion of an artificial U2 locus in the human genome.
Li YP, Tomanin R, Smiley JR, Bacchetti S. Li YP, et al. Mol Cell Biol. 1993 Oct;13(10):6064-70. doi: 10.1128/mcb.13.10.6064-6070.1993. Mol Cell Biol. 1993. PMID: 8413208 Free PMC article. - Interchromosomal recombination is suppressed in mammalian somatic cells.
Shulman MJ, Collins C, Connor A, Read LR, Baker MD. Shulman MJ, et al. EMBO J. 1995 Aug 15;14(16):4102-7. doi: 10.1002/j.1460-2075.1995.tb00082.x. EMBO J. 1995. PMID: 7664750 Free PMC article. - RAG-2 expression is not essential for chicken immunoglobulin gene conversion.
Takeda S, Masteller EL, Thompson CB, Buerstedde JM. Takeda S, et al. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4023-7. doi: 10.1073/pnas.89.9.4023. Proc Natl Acad Sci U S A. 1992. PMID: 1570327 Free PMC article.
References
- Biochem J. 1967 Apr;103(1):36-41 - PubMed
- Proc Natl Acad Sci U S A. 1962 Dec 15;48:2026-34 - PubMed
- J Mol Biol. 1975 Nov 5;98(3):503-17 - PubMed
- Cell. 1977 May;11(1):223-32 - PubMed
- Cell. 1979 Apr;16(4):777-85 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources