Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea - PubMed (original) (raw)
Review
. 2019 Jun;20(6):877-892.
doi: 10.1111/mpp.12794. Epub 2019 Apr 4.
Affiliations
- PMID: 30945788
- PMCID: PMC6637890
- DOI: 10.1111/mpp.12794
Review
Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea
Stefan Petrasch et al. Mol Plant Pathol. 2019 Jun.
Abstract
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.
Keywords: disease management; fruit ripening; fruit-pathogen interaction; plant breeding; plant defence; primary infection; secondary infection.
© 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Figures
Figure 1
Symptoms of Botrytis cinerea infections in strawberry. Panel A shows a senesced flower with B. cinerea mycelium growth. Panel B shows an advanced floral infection. Panels C and D show infections of fruit at different stages. An infected petal can be seen as the source of fruit infection in Panel D. Browning of leaves due to B. cinerea infections is shown in Panels E and F.
Figure 2
Botrytis cinerea disease cycle in strawberry. Sources of B. cinerea inoculum include infected leaves and sclerotia. Primary infections of flowers and secondary infections of fruit are depicted.
Figure 3
Progression of Botrytis cinerea infection in ripe strawberries. Inoculation was performed by wounding the fruit and adding a B. cinerea conidia suspension on the surface of the wound. Fruit are shown immediately after inoculation, and at 24 h to 96 h post‐inoculation (hpi). Wounded controls are included.
Figure 4
Ripening processes influence Botrytis cinerea infections of strawberries. Unripe fruit present unsuitable conditions for B. cinerea infection, while ripe fruit provide a favourable environment for pathogen growth. Pathogenicity factors are activated by B. cinerea during strawberry ripening and lead to increased susceptibility. ABA, abscisic acid; JA, jasmonic acid; PGIPs, PG‐inhibiting proteins; ROS, reactive oxygen species.
Similar articles
- Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS).
Zhao Y, De Coninck B, Ribeiro B, Nicolaï B, Hertog M. Zhao Y, et al. Int J Food Microbiol. 2023 Oct 2;402:110313. doi: 10.1016/j.ijfoodmicro.2023.110313. Epub 2023 Jun 29. Int J Food Microbiol. 2023. PMID: 37421873 - Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.
Rupp S, Plesken C, Rumsey S, Dowling M, Schnabel G, Weber RWS, Hahn M. Rupp S, et al. Appl Environ Microbiol. 2017 Apr 17;83(9):e00269-17. doi: 10.1128/AEM.00269-17. Print 2017 May 1. Appl Environ Microbiol. 2017. PMID: 28235878 Free PMC article. - The natural fenhexamid-resistant grey mould populations from strawberry in Zhejiang Province are dominated by Botrytis cinerea group S.
Yin D, Wu S, Liu N, Yin Y, Ma Z. Yin D, et al. Pest Manag Sci. 2016 Aug;72(8):1540-8. doi: 10.1002/ps.4183. Epub 2015 Dec 18. Pest Manag Sci. 2016. PMID: 26537826 - Grey mould disease of strawberry in northern Germany: causal agents, fungicide resistance and management strategies.
Weber RWS, Hahn M. Weber RWS, et al. Appl Microbiol Biotechnol. 2019 Feb;103(4):1589-1597. doi: 10.1007/s00253-018-09590-1. Epub 2019 Jan 4. Appl Microbiol Biotechnol. 2019. PMID: 30610288 Review. - Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit.
Luciano-Rosario D, Keller NP, Jurick WM 2nd. Luciano-Rosario D, et al. Mol Plant Pathol. 2020 Nov;21(11):1391-1404. doi: 10.1111/mpp.12990. Epub 2020 Sep 23. Mol Plant Pathol. 2020. PMID: 32969130 Free PMC article. Review.
Cited by
- Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit.
Silva CJ, Adaskaveg JA, Mesquida-Pesci SD, Ortega-Salazar IB, Pattathil S, Zhang L, Hahn MG, van Kan JAL, Cantu D, Powell ALT, Blanco-Ulate B. Silva CJ, et al. Plant Physiol. 2023 Jan 2;191(1):575-590. doi: 10.1093/plphys/kiac408. Plant Physiol. 2023. PMID: 36053186 Free PMC article. - Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes.
Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM. Soares F, et al. Hortic Res. 2022 Sep 21;9:uhac217. doi: 10.1093/hr/uhac217. eCollection 2022. Hortic Res. 2022. PMID: 36479580 Free PMC article. - Pathogenic Drug Resistant Fungi: A Review of Mitigation Strategies.
Garvey M, Rowan NJ. Garvey M, et al. Int J Mol Sci. 2023 Jan 13;24(2):1584. doi: 10.3390/ijms24021584. Int J Mol Sci. 2023. PMID: 36675092 Free PMC article. Review. - Survey on technical management of strawberries in Morocco and evaluation of their post-harvest microbial load.
El-Araby A, Azzouzi A, Ayam IM, Samouh KF, Errachidi F. El-Araby A, et al. Front Microbiol. 2023 Jan 10;13:1115340. doi: 10.3389/fmicb.2022.1115340. eCollection 2022. Front Microbiol. 2023. PMID: 36704550 Free PMC article. - High CO2 Reduces Spoilage Caused by Botrytis cinerea in Strawberry Without Impairing Fruit Quality.
Li H, Yin Y, Affandi FY, Zhong C, Schouten RE, Woltering EJ. Li H, et al. Front Plant Sci. 2022 Apr 27;13:842317. doi: 10.3389/fpls.2022.842317. eCollection 2022. Front Plant Sci. 2022. PMID: 35574136 Free PMC article.
References
- Adikaram, N.K.B. , Joyce, D.C. and Terry, L.A. (2002) Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Australas. Plant Pathol. 31(3), 223–229.
- Almeida, M.L.B. , Herbster Moura, C.F. , Innecco, R. , dos Santo, A. and Rodrigues de Miranda, F. . (2015) Postharvest shelf‐life and fruit quality of strawberry grown in different cropping systems. Afr. J. Agric. Res. 10(43), 4053–4061. 10.5897/AJAR2015.10239. - DOI
- Amselem, J. , Cuomo, C.A. , van Kan, J.A.L. , Viaud, M. , Benito, E.P. , Couloux, A. , Coutinho, P.M. , de Vries, R.P. , Dyer, P.S. , Fillinger, S. , Fournier, E. , Gout, L. , Hahn, M. , Kohn, L. , Lapalu, N. , Plummer, K.M. , Pradier, J.‐M. , Quévillon, E. , Sharon, A. , Simon, A. , ten Have, A. , Tudzynski, B. , Tudzynski, P. , Wincker, P. , Andrew, M. , Anthouard, V. , Beever, R.E. , Beffa, R. , Benoit, I. , Bouzid, O. , Brault, B. , Chen, Z. , Choquer, M. , Collémare, J. , Cotton, P. , Danchin, E.G. , Da Silva, C. , Gautier, A. , Giraud, C. , Giraud, T. , Gonzalez, C. , Grossetete, S. , Güldener, U. , Henrissat, B. , Howlett, B.J. , Kodira, C. , Kretschmer, M. , Lappartient, A. , Leroch, M. , Levis, C. , Mauceli, E. , Neuvéglise, C. , Oeser, B. , Pearson, M. , Poulain, J. , Poussereau, N. , Quesneville, H. , Rascle, C. , Schumacher, J. , Ségurens, B. , Sexton, A. , Silva, E. , Sirven, C. , Soanes, D.M. , Talbot, N.J. , Templeton, M. , Yandava, C. , Yarden, O. , Zeng, Q. , Rollins, J.A. , Lebrun, M.‐H. and Dickman, M. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea . PLoS Genet. 7(8), e1002230 10.1371/journal.pgen.1002230. - DOI - PMC - PubMed
- Avis, T.J. , Martinez, C. and Tweddell, R.J. (2006) Effect of chlorine atmospheres on the development of rhizopus rot [Rhizopus stolonifer] and gray mold [Botrytis cinerea] on stored strawberry fruits. Can. J. Plant Pathol. 28(4), 526–532. 10.1080/07060660609507330. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources