Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules - PubMed (original) (raw)

Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules

G Rinnerthaler et al. J Cell Biol. 1988 Mar.

Abstract

We have correlated the motility of the leading edge of fibroblasts, monitored by phase-contrast cinematography, with the relative distributions of several cytoskeletal elements (vinculin, tubulin, and actin) as well as with the contact patterns determined by interference reflection microscopy. This analysis has revealed the involvement of both ruffles and microspikes, as well as microtubules in the initiation of focal contact formation. Nascent vinculin sites within the leading edge or at its base, taken as primordial cell-substrate contacts, were invariably colocalized with sites that showed a history of transient, prolonged, or cyclic ruffling activity. Extended microspike structures, often preceded the formation of ruffles. Immunofluorescent labeling indicated that some of these primordial contacts were in close apposition to the ends of microtubules that penetrated into the leading edge. By fluorescence and electron microscopy short bundles of actin filaments found at the base of the leading edge were identified as presumptive, primordial contacts. It is concluded that ruffles and microspikes, either independently or in combination, initiate and mark the sites for future contact. Plaque proteins then accumulate (within 10-30 s) at the contract site and, beneath ruffles, induce localized bundling of actin filaments. We propose that all primordial contacts support traction for leading edge protrusion but that only some persist long enough to nucleate stress fiber assembly. Microtubules are postulated as the elements that select, stabilize, and potentiate the formation of these latter, long-lived contacts.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1967 Jan 21;213(5073):261-4 - PubMed
    1. J Cell Biol. 1984 Oct;99(4 Pt 1):1478-85 - PubMed
    1. Science. 1971 Jan 15;171(3967):135-43 - PubMed
    1. J Embryol Exp Morphol. 1970 Nov;24(3):625-40 - PubMed
    1. Exp Cell Res. 1985 Jan;156(1):287-93 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources