The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism - PubMed (original) (raw)
The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism
Anouar Hafiane et al. Metabolism. 2019 Nov.
Abstract
Cholesterol efflux is the initial step in the reverse cholesterol transport pathway by which excess cholesterol in peripheral cells is exported and subsequently packaged into high-density lipoprotein (HDL) particles. Adiponectin is the most abundantly secreted adipokine that possesses anti-inflammatory and vasculoprotective properties via interaction with transmembrane receptors, AdipoR1 and AdipoR2. Evidence suggests that low levels of adiponectin may be a useful marker for atherosclerotic disease. A proposed anti-atherogenic mechanism of adiponectin involves its ability to promote cholesterol efflux. We performed a systematic review of the role of adiponectin in cholesterol efflux and HDL biogenesis, and of the proteins and receptors believed to be implicated in this process. Nineteen eligible studies (7 clinical, 11 fundamental, 1 clinical + fundamental) were identified through Ovid Medline, Ovid Embase, and Pubmed, that support the notion that adiponectin plays a key role in promoting ABCA1-dependent cholesterol efflux and in modulating HDL biogenesis via activation of the PPAR-γ/LXR-α signalling pathways in macrophages. AdipoR1 and AdipoR2 are suggested to also be implicated in this process, however the data are conflicting/insufficient to establish any firm conclusions. Once the exact mechanisms are unravelled, adiponectin may be critical in defining future treatment strategies directed towards increasing HDL functionality and ultimately reducing atherosclerotic disease.
Keywords: ATP-binding cassette transporter A1; Adiponectin; Apolipoprotein A-I; Atherosclerosis; Cholesterol efflux; High-density lipoprotein.
Copyright © 2019. Published by Elsevier Inc.
Similar articles
- Adiponectin's mechanisms in high-density lipoprotein biogenesis and cholesterol efflux.
Hafiane A, Daskalopoulou SS. Hafiane A, et al. Metabolism. 2020 Dec;113:154393. doi: 10.1016/j.metabol.2020.154393. Epub 2020 Oct 13. Metabolism. 2020. PMID: 33058851 - Possibility of increasing cholesterol efflux by adiponectin and its receptors through the ATP binding cassette transporter A1 in HEK293T cells.
Kitajima K, Miura S, Yamauchi T, Uehara Y, Kiya Y, Rye KA, Kadowaki T, Saku K. Kitajima K, et al. Biochem Biophys Res Commun. 2011 Jul 29;411(2):305-11. doi: 10.1016/j.bbrc.2011.06.131. Epub 2011 Jun 28. Biochem Biophys Res Commun. 2011. PMID: 21740892 - Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages.
Tsubakio-Yamamoto K, Matsuura F, Koseki M, Oku H, Sandoval JC, Inagaki M, Nakatani K, Nakaoka H, Kawase R, Yuasa-Kawase M, Masuda D, Ohama T, Maeda N, Nakagawa-Toyama Y, Ishigami M, Nishida M, Kihara S, Shimomura I, Yamashita S. Tsubakio-Yamamoto K, et al. Biochem Biophys Res Commun. 2008 Oct 24;375(3):390-4. doi: 10.1016/j.bbrc.2008.08.009. Epub 2008 Aug 12. Biochem Biophys Res Commun. 2008. PMID: 18703020 - [Role of HDL in Cholesterol Efflux and Reverse Cholesterol Transport].
Ayaori M. Ayaori M. Rinsho Byori. 2016 Jan;64(1):57-65. Rinsho Byori. 2016. PMID: 27192798 Review. Japanese. - Age-associated decrease of high-density lipoprotein-mediated reverse cholesterol transport activity.
Berrougui H, Khalil A. Berrougui H, et al. Rejuvenation Res. 2009 Apr;12(2):117-26. doi: 10.1089/rej.2009.0840. Rejuvenation Res. 2009. PMID: 19405812 Review.
Cited by
- Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome.
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Dabravolski SA, et al. Int J Mol Sci. 2021 Apr 10;22(8):3923. doi: 10.3390/ijms22083923. Int J Mol Sci. 2021. PMID: 33920227 Free PMC article. Review. - Effects of Cilostazol on Angiogenesis in Diabetes through Adiponectin/Adiponectin Receptors/Sirtuin1 Signaling Pathway.
Tseng SY, Chang HY, Li YH, Chao TH. Tseng SY, et al. Int J Mol Sci. 2022 Nov 27;23(23):14839. doi: 10.3390/ijms232314839. Int J Mol Sci. 2022. PMID: 36499166 Free PMC article. - Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome.
Butnariu LI, Gorduza EV, Țarcă E, Pânzaru MC, Popa S, Stoleriu S, Lupu VV, Lupu A, Cojocaru E, Trandafir LM, Moisă ȘM, Florea A, Stătescu L, Bădescu MC. Butnariu LI, et al. Diagnostics (Basel). 2023 Jul 12;13(14):2348. doi: 10.3390/diagnostics13142348. Diagnostics (Basel). 2023. PMID: 37510094 Free PMC article. Review. - Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI-A putative indicator of serum adiponectin level and individual factors of cardio-metabolic risk.
Hassler EM, Deutschmann H, Almer G, Renner W, Mangge H, Herrmann M, Leber S, Michenthaler M, Staszewski A, Gunzer F, Partl R, Reishofer G. Hassler EM, et al. PLoS One. 2021 Nov 15;16(11):e0259952. doi: 10.1371/journal.pone.0259952. eCollection 2021. PLoS One. 2021. PMID: 34780545 Free PMC article. - Lipid metabolism dynamics in cancer stem cells: potential targets for cancers.
Du J, Qin H. Du J, et al. Front Pharmacol. 2024 Jun 27;15:1367981. doi: 10.3389/fphar.2024.1367981. eCollection 2024. Front Pharmacol. 2024. PMID: 38994204 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical