The human body at cellular resolution: the NIH Human Biomolecular Atlas Program - PubMed (original) (raw)

The human body at cellular resolution: the NIH Human Biomolecular Atlas Program

HuBMAP Consortium. Nature. 2019 Oct.

Abstract

Transformative technologies are enabling the construction of three-dimensional maps of tissues with unprecedented spatial and molecular resolution. Over the next seven years, the NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) intends to develop a widely accessible framework for comprehensively mapping the human body at single-cell resolution by supporting technology development, data acquisition, and detailed spatial mapping. HuBMAP will integrate its efforts with other funding agencies, programs, consortia, and the biomedical research community at large towards the shared vision of a comprehensive, accessible three-dimensional molecular and cellular atlas of the human body, in health and under various disease conditions.

PubMed Disclaimer

Conflict of interest statement

M.P.S. is a cofounder and on the scientific advisory board of Personalis, Filtircine, SensOmics, Qbio, January, Mirvie, Oralome and Proteus. He is also on the scientific advisory board (SAB) of Genapsys and Jupiter and on the advisory board of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). P.V.K. serves on the SAB to Celsius Therapeutics. A.R. is a member of the SAB of ThermoFisher Scientific and Syros Pharmaceuticals and a founder and an equity holder of Celsius Therapeutics. A.R. holds various patents and has patent filings in the areas of single-cell and spatial genomic technologies, and is a member of the advisory council of the National Human Genome Research Institute (NHGRI). C.K. is a co-founder of Ocean Genomics. P.Y. is a co-founder, paid consultant, director, and equity holder of Ultivue and NuProbe Global and holds several patent filings in the areas of single-cell and spatial genomic technologies. N.G. is a co-founder and equity owner of Datavisyn. R.F.M. is a cofounder and board member of Quantitative Medicine and is on the Advisory Board of Predictive Oncology and the Scientific Advisory Board of the Morgridge Institute for Research. The other authors declare no competing interests.

Figures

Fig. 1

Fig. 1. The HubMAP consortium.

The TMCs will collect tissue samples and generate spatially resolved, single-cell data. Groups involved in TTD and RTI initiatives will develop emerging and more developed technologies, respectively; in later years, these will be implemented at scale. Data from all groups will be rendered useable for the biomedical community by the HuBMAP integration, visualization and engagement (HIVE) teams. The groups will collaborate closely to iteratively refine the atlas as it is gradually realized.

Fig. 2

Fig. 2. Key tissues and organs initially analysed by the consortium.

Using innovative, production-grade (‘shovel ready’) technologies, HuBMAP TMCs will generate data for single-cell, three-dimensional maps of various human tissues. In parallel, TTD projects (and later RTI projects) will refine assays and analysis tools on a largely distinct set of human tissues. Samples from individuals of both sexes and different ages will be studied. The range of tissues will be expanded throughout the program.

Fig. 3

Fig. 3. Map generation and assembly across cellular and spatial scales.

HuBMAP aims to produce an atlas in which users can refer to a histological slide from a specific part of an organ and, in any given cell, understand its contents on multiple ’omic levels—genomic, epigenomic, transcriptomic, proteomic, and/or metabolomic. To achieve these ends, centres will apply a combination of imaging, ’omics and mass spectrometry techniques to specimens collected in a reproducible manner from specific sites in the body. These data will be then be integrated to arrive at a high-resolution, high-content three-dimensional map for any given tissue. To ensure inter-individual differences will not be confounded with collection heterogeneity, a robust CCF will be developed.

Similar articles

Cited by

References

    1. Svensson V, et al. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods. 2017;14:381–387. - PMC - PubMed
    1. Schwartzman O, Tanay A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 2015;16:716–726. - PubMed
    1. Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017;541:331–338. - PMC - PubMed
    1. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 2013;113:2309–2342. - PMC - PubMed
    1. GTEx Consortium Genetic effects on gene expression across human tissues. Nature. 2017;550:204–213. - PMC - PubMed

Publication types

MeSH terms

Grants and funding

LinkOut - more resources