A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity - PubMed (original) (raw)
A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity
Lucia M Malone et al. Nat Microbiol. 2020 Jan.
Abstract
CRISPR-Cas systems provide bacteria with adaptive immunity against bacteriophages1. However, DNA modification2,3, the production of anti-CRISPR proteins4,5 and potentially other strategies enable phages to evade CRISPR-Cas. Here, we discovered a Serratia jumbo phage that evades type I CRISPR-Cas systems, but is sensitive to type III immunity. Jumbo phage infection resulted in a nucleus-like structure enclosed by a proteinaceous phage shell-a phenomenon only reported recently for distantly related Pseudomonas phages6,7. All three native CRISPR-Cas complexes in Serratia-type I-E, I-F and III-A-were spatially excluded from the phage nucleus and phage DNA was not targeted. However, the type III-A system still arrested jumbo phage infection by targeting phage RNA in the cytoplasm in a process requiring Cas7, Cas10 and an accessory nuclease. Type III, but not type I, systems frequently targeted nucleus-forming jumbo phages that were identified in global viral sequence datasets. The ability to recognize jumbo phage RNA and elicit immunity probably contributes to the presence of both RNA- and DNA-targeting CRISPR-Cas systems in many bacteria1,8. Together, our results support the model that jumbo phage nucleus-like compartments serve as a barrier to DNA-targeting, but not RNA-targeting, defences, and that this phenomenon is widespread among jumbo phages.
Comment in
- Phages build anti-defence barriers.
Koonin EV, Krupovic M. Koonin EV, et al. Nat Microbiol. 2020 Jan;5(1):8-9. doi: 10.1038/s41564-019-0635-y. Nat Microbiol. 2020. PMID: 31857728 No abstract available. - CRISPR Shields: Fending Off Diverse Cas Nucleases with Nucleus-like Structures.
Barrangou R, Sontheimer EJ. Barrangou R, et al. Mol Cell. 2020 Mar 5;77(5):934-936. doi: 10.1016/j.molcel.2020.02.015. Mol Cell. 2020. PMID: 32142691
Similar articles
- Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection.
Mayo-Muñoz D, Smith LM, Garcia-Doval C, Malone LM, Harding KR, Jackson SA, Hampton HG, Fagerlund RD, Gumy LF, Fineran PC. Mayo-Muñoz D, et al. Mol Cell. 2022 Dec 1;82(23):4471-4486.e9. doi: 10.1016/j.molcel.2022.10.028. Epub 2022 Nov 16. Mol Cell. 2022. PMID: 36395770 - Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
Goldberg GW, Jiang W, Bikard D, Marraffini LA. Goldberg GW, et al. Nature. 2014 Oct 30;514(7524):633-7. doi: 10.1038/nature13637. Epub 2014 Aug 31. Nature. 2014. PMID: 25174707 Free PMC article. - Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
Hoikkala V, Ravantti J, Díez-Villaseñor C, Tiirola M, Conrad RA, McBride MJ, Moineau S, Sundberg LR. Hoikkala V, et al. mBio. 2021 Mar 30;12(2):e03338-20. doi: 10.1128/mBio.03338-20. mBio. 2021. PMID: 33785624 Free PMC article. - Intracellular Organization by Jumbo Bacteriophages.
Guan J, Bondy-Denomy J. Guan J, et al. J Bacteriol. 2020 Dec 18;203(2):e00362-20. doi: 10.1128/JB.00362-20. Print 2020 Dec 18. J Bacteriol. 2020. PMID: 32868402 Free PMC article. Review. - Conquering CRISPR: how phages overcome bacterial adaptive immunity.
Malone LM, Birkholz N, Fineran PC. Malone LM, et al. Curr Opin Biotechnol. 2021 Apr;68:30-36. doi: 10.1016/j.copbio.2020.09.008. Epub 2020 Oct 24. Curr Opin Biotechnol. 2021. PMID: 33113496 Review.
Cited by
- Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia.
Hampton HG, Smith LM, Ferguson S, Meaden S, Jackson SA, Fineran PC. Hampton HG, et al. Microb Genom. 2020 Nov;6(11):mgen000458. doi: 10.1099/mgen.0.000458. Microb Genom. 2020. PMID: 33074086 Free PMC article. - The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era.
Jo SJ, Kwon J, Kim SG, Lee SJ. Jo SJ, et al. Microorganisms. 2023 Sep 13;11(9):2311. doi: 10.3390/microorganisms11092311. Microorganisms. 2023. PMID: 37764155 Free PMC article. Review. - Genomic and proteomic characterization of vB_SauM-UFV_DC4, a novel Staphylococcus jumbo phage.
da Silva JD, Melo LDR, Santos SB, Kropinski AM, Xisto MF, Dias RS, da Silva Paes I, Vieira MS, Soares JJF, Porcellato D, da Silva Duarte V, de Paula SO. da Silva JD, et al. Appl Microbiol Biotechnol. 2023 Dec;107(23):7231-7250. doi: 10.1007/s00253-023-12743-6. Epub 2023 Sep 23. Appl Microbiol Biotechnol. 2023. PMID: 37741937 Free PMC article. - Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae.
Bonilla E, Costa AR, van den Berg DF, van Rossum T, Hagedoorn S, Walinga H, Xiao M, Song W, Haas PJ, Nobrega FL, Brouns SJJ. Bonilla E, et al. DNA Res. 2021 Aug 25;28(4):dsab013. doi: 10.1093/dnares/dsab013. DNA Res. 2021. PMID: 34390569 Free PMC article. - A phage nucleus-associated RNA-binding protein is required for jumbo phage infection.
Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, Gu Y, Deep A, Naritomi JT, Liang Q, Aigner S, Adler BA, Cress BF, Doudna JA, Chaikeeratisak V, Cleveland DW, Ghassemian M, Bintu B, Yeo GW, Pogliano J, Corbett KD. Enustun E, et al. Nucleic Acids Res. 2024 May 8;52(8):4440-4455. doi: 10.1093/nar/gkae216. Nucleic Acids Res. 2024. PMID: 38554115 Free PMC article.
References
- Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018). - DOI
- Vlot, M. et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR–Cas effector complexes. Nucleic Acids Res. 46, 873–885 (2018). - PubMed
- Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources