Adaptive Binarization of QR Code Images for FastAutomatic Sorting in Warehouse Systems - PubMed (original) (raw)
Adaptive Binarization of QR Code Images for FastAutomatic Sorting in Warehouse Systems
Rongjun Chen et al. Sensors (Basel). 2019.
Abstract
As the fundamental element of the Internet of Things, the QR code has become increasingly crucial for connecting online and offline services. Concerning e-commerce and logistics, we mainly focus on how to identify QR codes quickly and accurately. An adaptive binarization approach is proposed to solve the problem of uneven illumination in warehouse automatic sorting systems. Guided by cognitive modeling, we adaptively select the block window of the QR code for robust binarization under uneven illumination. The proposed method can eliminate the impact of uneven illumination of QR codes effectively whilst meeting the real-time needs in the automatic warehouse sorting. Experimental results have demonstrated the superiority of the proposed approach when benchmarked with several state-of-the-art methods.
Keywords: QR code; adaptive binarization; automatic sorting system; uneven illumination.
Conflict of interest statement
The authors declare that they have no conflicts of interest.
Figures
Figure 1
Diagram of warehouse automatic sorting system.
Figure 2
Diagram of preprocessing.
Figure 3
Process of the adaptive selection of the block window.
Figure 4
The experimental results in ascending order of image size. (a) Original image; (b) Block size w – 10; (c) Block size w – 5; (d) Block size w; (e) Block size w + 5; (f) Block size w + 10.
Figure 5
The values of PSNR and SSIM of different sizes of QR codes under different windows processing. (a) The line graph corresponding to PSNR; (b) The line graph corresponding to SSIM.
Figure 6
The experimental results of fixed image size. (a) Original image; (b) Block size w – 10; (c) Block size w – 5; (d) Block size w; (e) Block size w + 5; (f) Block size w + 10.
Figure 7
The values of PSNR and SSIM of QR codes in the same size under different window processing. (a) The line graph corresponding to PSNR; (b) The line graph corresponding to SSIM.
Figure 8
Process of QR code binarization.
Figure 9
Process of cyclic threshold algorithm.
Figure 10
The original image and experimental results from different algorithms: (a) Original image; (b) Otsu’s algorithm; (c) Niblack’s algorithm; (d) Yao’s algorithm; (e) Di’s algorithm; (f) Proposed method.
Figure 11
The original image and experimental results from different algorithms: (a) Original image; (b) Otsu’s algorithm; (c) Niblack’s algorithm; (d) Yao’s algorithm; (e) Di’s algorithm; (f) Proposed method.
Figure 12
The original image and experimental results from different algorithms: (a) Original image; (b) Otsu’s algorithm; (c) Niblack’s algorithm; (d) Yao’s algorithm; (e) Di’s algorithm; (f) Proposed method.
Figure 13
The original image and experimental results from different algorithms: (a) Original image; (b) Otsu’s algorithm; (c) Niblack’s algorithm; (d) Yao’s algorithm; (e) Di’s algorithm; (f) Proposed method.
Figure 14
The original image and experimental results from different algorithms: (a) Original image; (b) Otsu’s algorithm; (c) Niblack’s algorithm; (d) Yao’s algorithm; (e) Di’s algorithm; (f) Proposed method.
Figure 15
The values of PSNR and SSIM of different QR codes using different algorithms. (a) The line graph corresponding to PSNR; (b) The line graph corresponding to SSIM.
Similar articles
- Digital Forensics of Scanned QR Code Images for Printer Source Identification Using Bottleneck Residual Block.
Guo Z, Zheng H, You C, Xu X, Wu X, Zheng Z, Ju J. Guo Z, et al. Sensors (Basel). 2020 Nov 5;20(21):6305. doi: 10.3390/s20216305. Sensors (Basel). 2020. PMID: 33167526 Free PMC article. - QR images: optimized image embedding in QR codes.
Garateguy GJ, Arce GR, Lau DL, Villarreal OP. Garateguy GJ, et al. IEEE Trans Image Process. 2014 Jul;23(7):2842-53. doi: 10.1109/TIP.2014.2321501. Epub 2014 May 2. IEEE Trans Image Process. 2014. PMID: 24808410 - Structure similarity-guided image binarization for automatic segmentation of epidermis surface microstructure images.
Zou Y, Lei B, Dong F, Xu G, Sun S, Xia P. Zou Y, et al. J Microsc. 2017 May;266(2):153-165. doi: 10.1111/jmi.12525. Epub 2017 Jan 24. J Microsc. 2017. PMID: 28117893 - Binarization Algorithm Based on Side Window Multidimensional Convolution Classification.
Ren H, Wang Y, Dong X. Ren H, et al. Sensors (Basel). 2022 Jul 28;22(15):5640. doi: 10.3390/s22155640. Sensors (Basel). 2022. PMID: 35957200 Free PMC article. - The Role of Qualitative Research Methods in Discrete Choice Experiments.
Vass C, Rigby D, Payne K. Vass C, et al. Med Decis Making. 2017 Apr;37(3):298-313. doi: 10.1177/0272989X16683934. Epub 2017 Jan 6. Med Decis Making. 2017. PMID: 28061040 Free PMC article. Review.
Cited by
- Digital Forensics of Scanned QR Code Images for Printer Source Identification Using Bottleneck Residual Block.
Guo Z, Zheng H, You C, Xu X, Wu X, Zheng Z, Ju J. Guo Z, et al. Sensors (Basel). 2020 Nov 5;20(21):6305. doi: 10.3390/s20216305. Sensors (Basel). 2020. PMID: 33167526 Free PMC article. - Customized 2D Barcode Sensing for Anti-Counterfeiting Application in Smart IoT with Fast Encoding and Information Hiding.
Chen R, Yu Y, Chen J, Zhong Y, Zhao H, Hussain A, Tan HZ. Chen R, et al. Sensors (Basel). 2020 Aug 31;20(17):4926. doi: 10.3390/s20174926. Sensors (Basel). 2020. PMID: 32878171 Free PMC article. - Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition.
Michalak H, Okarma K. Michalak H, et al. Sensors (Basel). 2020 May 21;20(10):2914. doi: 10.3390/s20102914. Sensors (Basel). 2020. PMID: 32455623 Free PMC article.
References
- Yao L., Sheng Q.Z., Dustdar S. Web-based management of the internet of things. IEEE Internet Comput. 2015;19:60–67. doi: 10.1109/MIC.2015.77. - DOI
- Li D.X., He W., Li S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014;10:2233–2243.
- Raja S., Rajkumar T.D., Raj V.P. Internet of things: Challenges, issues and applications. J. Circuits Syst. Comput. 2018;27:1830007. doi: 10.1142/S0218126618300076. - DOI
- Miorandi D., Sicari S., De Pellegrini F., Chlamtac I. Internet of things: Vision, applications and research challenges. Ad hoc Netw. 2012;10:1497–1516. doi: 10.1016/j.adhoc.2012.02.016. - DOI
- McCullouch B.G., Lueprasert K. 2D bar-code applications in construction. J. Constr. Eng. Manag. 1994;120:739–752. doi: 10.1061/(ASCE)0733-9364(1994)120:4(739). - DOI
Grants and funding
- NO.61672008/National Natural Science Foundation of China
- NO.2017KCXT021/Innovation Team Project of Department Education of Guangdong Province
- NO.2018KTSCX120/Project for Distinctive Innovation of Ordinary Universities of Guangdong Province
LinkOut - more resources
Full Text Sources
Research Materials