Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images - PubMed (original) (raw)
Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images
C Toyoshima et al. Ultramicroscopy. 1988.
Free article
Abstract
Electron imaging of frozen-hydrated biological molecules allows density maps to be obtained directly, without the need for fixatives or stains. The appearance of such maps may, however, be strongly influenced by the contrast transfer properties, which have not previously been evaluated by quantitative experiments. Here we determine the contribution due to amplitude contrast in a typical (approximately 300 A thick) frozen specimen, consisting of arrays of acetylcholine receptor, by comparing pairs of images recorded with different defocuses. We find that this specimen is imaged as a "weak-phase-weak-amplitude" object and that the contribution due to amplitude contrast is 7%.
Similar articles
- Preparation and assessment of frozen-hydrated sections of mammalian tissue for electron microscopy and X-ray microprobe analysis.
Ross A, Sumner AT, Ross AR. Ross A, et al. J Microsc. 1981 Mar;121(Pt 3):261-72. doi: 10.1111/j.1365-2818.1981.tb01223.x. J Microsc. 1981. PMID: 7218347 - Instrumentation for direct observation of frozen hydrated specimens in the electron microscope.
Hutchinson TE, Johnson DE, MacKenzie AP. Hutchinson TE, et al. Ultramicroscopy. 1978;3(3):315-24. doi: 10.1016/s0304-3991(78)80041-2. Ultramicroscopy. 1978. PMID: 734786 - Electron spectroscopic imaging of frozen-hydrated sections.
Probst W, Zellmann E, Bauer R. Probst W, et al. Ultramicroscopy. 1989 Apr 1;28(1-4):312-4. doi: 10.1016/0304-3991(89)90315-x. Ultramicroscopy. 1989. PMID: 2711522 No abstract available. - The x-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation.
Gupta BL, Hall TA. Gupta BL, et al. Tissue Cell. 1981;13(4):623-43. doi: 10.1016/s0040-8166(81)80001-8. Tissue Cell. 1981. PMID: 7036407 Review.
Cited by
- Cryo-EM of the native structure of the calcium release channel/ryanodine receptor from sarcoplasmic reticulum.
Radermacher M, Wagenknecht T, Grassucci R, Frank J, Inui M, Chadwick C, Fleischer S. Radermacher M, et al. Biophys J. 1992 Apr;61(4):936-40. doi: 10.1016/S0006-3495(92)81900-8. Biophys J. 1992. PMID: 1316182 Free PMC article. - Cryo-EM studies of microtubule structural intermediates and kinetochore-microtubule interactions.
Nogales E, Ramey VH, Wang HW. Nogales E, et al. Methods Cell Biol. 2010;95:129-56. doi: 10.1016/S0091-679X(10)95008-5. Methods Cell Biol. 2010. PMID: 20466133 Free PMC article. Review. - Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects.
Glaeser RM, Hall RJ. Glaeser RM, et al. Biophys J. 2011 May 18;100(10):2331-7. doi: 10.1016/j.bpj.2011.04.018. Biophys J. 2011. PMID: 21575566 Free PMC article. Review. - Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody.
Smith TJ, Olson NH, Cheng RH, Liu H, Chase ES, Lee WM, Leippe DM, Mosser AG, Rueckert RR, Baker TS. Smith TJ, et al. J Virol. 1993 Mar;67(3):1148-58. doi: 10.1128/JVI.67.3.1148-1158.1993. J Virol. 1993. PMID: 7679742 Free PMC article. - Accurate magnification determination for cryoEM using gold.
Dickerson JL, Leahy E, Peet MJ, Naydenova K, Russo CJ. Dickerson JL, et al. Ultramicroscopy. 2024 Feb;256:113883. doi: 10.1016/j.ultramic.2023.113883. Epub 2023 Nov 15. Ultramicroscopy. 2024. PMID: 38008055 Free PMC article.