Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin - PubMed (original) (raw)
Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin
V Graziano et al. J Mol Biol. 1988.
Abstract
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure.
Similar articles
- Neutron scattering studies on chromatin higher-order structure.
Graziano V, Gerchman SE, Schneider DK, Ramakrishnan V. Graziano V, et al. Basic Life Sci. 1996;64:127-36. doi: 10.1007/978-1-4615-5847-7_13. Basic Life Sci. 1996. PMID: 9031508 - Exchange of histones H1 and H5 between chromatin fragments. A preference of H5 for higher-order structures.
Thomas JO, Rees C. Thomas JO, et al. Eur J Biochem. 1983 Jul 15;134(1):109-15. doi: 10.1111/j.1432-1033.1983.tb07538.x. Eur J Biochem. 1983. PMID: 6861754 - Interaction of HMG14 with chromatin.
Graziano V, Ramakrishnan V. Graziano V, et al. J Mol Biol. 1990 Aug 20;214(4):897-910. doi: 10.1016/0022-2836(90)90344-L. J Mol Biol. 1990. PMID: 2388273 - Regulation of the higher-order structure of chromatin by histones H1 and H5.
Allan J, Cowling GJ, Harborne N, Cattini P, Craigie R, Gould H. Allan J, et al. J Cell Biol. 1981 Aug;90(2):279-88. doi: 10.1083/jcb.90.2.279. J Cell Biol. 1981. PMID: 7287811 Free PMC article. - Histone H1 and chromatin higher-order structure.
Ramakrishnan V. Ramakrishnan V. Crit Rev Eukaryot Gene Expr. 1997;7(3):215-30. doi: 10.1615/critreveukargeneexpr.v7.i3.20. Crit Rev Eukaryot Gene Expr. 1997. PMID: 9399071 Review.
Cited by
- Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure.
Pepenella S, Murphy KJ, Hayes JJ. Pepenella S, et al. Chromosoma. 2014 Mar;123(1-2):3-13. doi: 10.1007/s00412-013-0435-8. Epub 2013 Aug 31. Chromosoma. 2014. PMID: 23996014 Free PMC article. Review. - Chromatin structure outside and inside the nucleus.
Ghirlando R, Felsenfeld G. Ghirlando R, et al. Biopolymers. 2013 Apr;99(4):225-32. doi: 10.1002/bip.22157. Biopolymers. 2013. PMID: 23348669 Free PMC article. - Multifunctionality of the linker histones: an emerging role for protein-protein interactions.
McBryant SJ, Lu X, Hansen JC. McBryant SJ, et al. Cell Res. 2010 May;20(5):519-28. doi: 10.1038/cr.2010.35. Epub 2010 Mar 23. Cell Res. 2010. PMID: 20309017 Free PMC article. Review. - Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
Routh A, Sandin S, Rhodes D. Routh A, et al. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8872-7. doi: 10.1073/pnas.0802336105. Epub 2008 Jun 26. Proc Natl Acad Sci U S A. 2008. PMID: 18583476 Free PMC article. - Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6.
Rhoades AR, Ruone S, Formosa T. Rhoades AR, et al. Mol Cell Biol. 2004 May;24(9):3907-17. doi: 10.1128/MCB.24.9.3907-3917.2004. Mol Cell Biol. 2004. PMID: 15082784 Free PMC article.