Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin - PubMed (original) (raw)
Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin
V Graziano et al. J Mol Biol. 1988.
Abstract
Reconstitution of the 30 nm filament of chromatin from pure histone H5 and chromatin depleted of H1 and H5 has been studied using small-angle neutron-scattering. We find that depleted, or stripped, chromatin is saturated by H5 at the same stoichiometry as that of linker histone in native chromatin. The structure and condensation behavior of fully reconstituted chromatin is indistinguishable from that of native chromatin. Both native and reconstituted chromatin condense continuously as a function of salt concentration, to reach a limiting structure that has a mass per unit length of 6.4 nucleosomes per 11 nm. Stripped chromatin at all ionic strengths appears to be a 10 nm filament, or a random coil of nucleosomes. In contrast, both native and reconstituted chromatin have a quite different structure, showing that H5 imposes a spatial correlation between neighboring nucleosomes even at low ionic strength. Our data also suggest that five to seven contiguous nucleosomes must have H5 bound in order to be able to form a higher-order structure.
Similar articles
- Neutron scattering studies on chromatin higher-order structure.
Graziano V, Gerchman SE, Schneider DK, Ramakrishnan V. Graziano V, et al. Basic Life Sci. 1996;64:127-36. doi: 10.1007/978-1-4615-5847-7_13. Basic Life Sci. 1996. PMID: 9031508 - Exchange of histones H1 and H5 between chromatin fragments. A preference of H5 for higher-order structures.
Thomas JO, Rees C. Thomas JO, et al. Eur J Biochem. 1983 Jul 15;134(1):109-15. doi: 10.1111/j.1432-1033.1983.tb07538.x. Eur J Biochem. 1983. PMID: 6861754 - Interaction of HMG14 with chromatin.
Graziano V, Ramakrishnan V. Graziano V, et al. J Mol Biol. 1990 Aug 20;214(4):897-910. doi: 10.1016/0022-2836(90)90344-L. J Mol Biol. 1990. PMID: 2388273 - Regulation of the higher-order structure of chromatin by histones H1 and H5.
Allan J, Cowling GJ, Harborne N, Cattini P, Craigie R, Gould H. Allan J, et al. J Cell Biol. 1981 Aug;90(2):279-88. doi: 10.1083/jcb.90.2.279. J Cell Biol. 1981. PMID: 7287811 Free PMC article. - Histone H1 and chromatin higher-order structure.
Ramakrishnan V. Ramakrishnan V. Crit Rev Eukaryot Gene Expr. 1997;7(3):215-30. doi: 10.1615/critreveukargeneexpr.v7.i3.20. Crit Rev Eukaryot Gene Expr. 1997. PMID: 9399071 Review.
Cited by
- Higher-order structure of Saccharomyces cerevisiae chromatin.
Lowary PT, Widom J. Lowary PT, et al. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8266-70. doi: 10.1073/pnas.86.21.8266. Proc Natl Acad Sci U S A. 1989. PMID: 2682643 Free PMC article. - Ultrastructure of transcriptionally competent chromatin.
Locklear L Jr, Ridsdale JA, Bazett-Jones DP, Davie JR. Locklear L Jr, et al. Nucleic Acids Res. 1990 Dec 11;18(23):7015-24. doi: 10.1093/nar/18.23.7015. Nucleic Acids Res. 1990. PMID: 2263461 Free PMC article. - Histone H1 is a specific repressor of core histone acetylation in chromatin.
Herrera JE, West KL, Schiltz RL, Nakatani Y, Bustin M. Herrera JE, et al. Mol Cell Biol. 2000 Jan;20(2):523-9. doi: 10.1128/MCB.20.2.523-529.2000. Mol Cell Biol. 2000. PMID: 10611231 Free PMC article. - Histone H1 represses transcription from minichromosomes assembled in vitro.
Shimamura A, Sapp M, Rodriguez-Campos A, Worcel A. Shimamura A, et al. Mol Cell Biol. 1989 Dec;9(12):5573-84. doi: 10.1128/mcb.9.12.5573-5584.1989. Mol Cell Biol. 1989. PMID: 2586527 Free PMC article. - Chromatin structure outside and inside the nucleus.
Ghirlando R, Felsenfeld G. Ghirlando R, et al. Biopolymers. 2013 Apr;99(4):225-32. doi: 10.1002/bip.22157. Biopolymers. 2013. PMID: 23348669 Free PMC article.