Deep learning based prediction of species-specific protein S-glutathionylation sites - PubMed (original) (raw)
. 2020 Jul;1868(7):140422.
doi: 10.1016/j.bbapap.2020.140422. Epub 2020 Mar 29.
Affiliations
- PMID: 32234550
- DOI: 10.1016/j.bbapap.2020.140422
Deep learning based prediction of species-specific protein S-glutathionylation sites
Shihua Li et al. Biochim Biophys Acta Proteins Proteom. 2020 Jul.
Abstract
As a widespread and reversible post-translational modification of proteins, S-glutathionylation specifically generates the mixed disulfides between cysteine residues and glutathione, which regulates various biological processes including oxidative stress, nitrosative stress and signal transduction. The identification of proteins and specific sites that undergo S-glutathionylation is crucial for understanding the underlying mechanisms and regulatory effects of S-glutathionylation. Experimental identification of S-glutathionylation sites is laborious and time-consuming, whereas computational predictions are more attractive due to their high speed and convenience. Here, we developed a novel computational framework DeepGSH (http://deepgsh.cancerbio.info/) for species-specific S-glutathionylation sites prediction, based on deep learning and particle swarm optimization algorithms. 5-fold cross validation indicated that DeepGSH was able to achieve an AUC of 0.8393 and 0.8458 for Homo sapiens and Mus musculus. According to critical evaluation and comparison, DeepGSH showed excellent robustness and better performance than existing tools in both species, demonstrating DeepGSH was suitable for S-glutathionylation prediction. The prediction results of DeepGSH might provide guidance for experimental validation of S-glutathionylation sites and helpful information to understand the intrinsic mechanisms.
Keywords: Deep learning; Prediction; S-glutathionylation; Species-specific.
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare no competing financial interests.
Similar articles
- Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.
Zhao X, Ning Q, Ai M, Chai H, Yang G. Zhao X, et al. J Theor Biol. 2016 Jun 7;398:96-102. doi: 10.1016/j.jtbi.2016.03.030. Epub 2016 Mar 26. J Theor Biol. 2016. PMID: 27025952 - Prediction of S-glutathionylation sites based on protein sequences.
Sun C, Shi ZZ, Zhou X, Chen L, Zhao XM. Sun C, et al. PLoS One. 2013;8(2):e55512. doi: 10.1371/journal.pone.0055512. Epub 2013 Feb 13. PLoS One. 2013. PMID: 23418443 Free PMC article. - PGluS: prediction of protein S-glutathionylation sites with multiple features and analysis.
Zhao X, Ning Q, Ai M, Chai H, Yin M. Zhao X, et al. Mol Biosyst. 2015 Mar;11(3):923-9. doi: 10.1039/c4mb00680a. Epub 2015 Jan 19. Mol Biosyst. 2015. PMID: 25599514 - Protein S-glutathionylation: a regulatory device from bacteria to humans.
Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A. Dalle-Donne I, et al. Trends Biochem Sci. 2009 Feb;34(2):85-96. doi: 10.1016/j.tibs.2008.11.002. Epub 2009 Jan 8. Trends Biochem Sci. 2009. PMID: 19135374 Review. - Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation.
Shelton MD, Chock PB, Mieyal JJ. Shelton MD, et al. Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66. doi: 10.1089/ars.2005.7.348. Antioxid Redox Signal. 2005. PMID: 15706083 Review.
Cited by
- Post-translational modification prediction via prompt-based fine-tuning of a GPT-2 model.
Shrestha P, Kandel J, Tayara H, Chong KT. Shrestha P, et al. Nat Commun. 2024 Aug 7;15(1):6699. doi: 10.1038/s41467-024-51071-9. Nat Commun. 2024. PMID: 39107330 Free PMC article. - pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework.
Li S, Yu K, Wu G, Zhang Q, Wang P, Zheng J, Liu ZX, Wang J, Gao X, Cheng H. Li S, et al. Front Cell Dev Biol. 2021 Feb 23;9:617366. doi: 10.3389/fcell.2021.617366. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33732693 Free PMC article. - Current progress and open challenges for applying deep learning across the biosciences.
Sapoval N, Aghazadeh A, Nute MG, Antunes DA, Balaji A, Baraniuk R, Barberan CJ, Dannenfelser R, Dun C, Edrisi M, Elworth RAL, Kille B, Kyrillidis A, Nakhleh L, Wolfe CR, Yan Z, Yao V, Treangen TJ. Sapoval N, et al. Nat Commun. 2022 Apr 1;13(1):1728. doi: 10.1038/s41467-022-29268-7. Nat Commun. 2022. PMID: 35365602 Free PMC article. Review. - MDCAN-Lys: A Model for Predicting Succinylation Sites Based on Multilane Dense Convolutional Attention Network.
Wang H, Zhao H, Yan Z, Zhao J, Han J. Wang H, et al. Biomolecules. 2021 Jun 11;11(6):872. doi: 10.3390/biom11060872. Biomolecules. 2021. PMID: 34208298 Free PMC article. - S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogenecity of Streptococcus mutans.
Li Z, Zhang C, Li C, Zhou J, Xu X, Peng X, Zhou X. Li Z, et al. PLoS Pathog. 2020 Jul 27;16(7):e1008774. doi: 10.1371/journal.ppat.1008774. eCollection 2020 Jul. PLoS Pathog. 2020. PMID: 32716974 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials