Ultra-high-resolution SD-OCM imaging with a compact polarization-aligned 840 nm broadband combined-SLED source - PubMed (original) (raw)
. 2020 Jun 1;11(6):3395-3406.
doi: 10.1364/BOE.394229.
Marcus Duelk 2, Stefan Gloor 2, Jean Dahdah 2, Jose Ojeda 2, Caterina Sturtzel 3, Shiyu Deng 1, Abigail Joyce Deloria 1, Qian Li 1, Mengyang Liu 1, Martin Distel 3, Wolfgang Drexler 1, Rainer Leitgeb 1 4
Affiliations
- PMID: 32637262
- PMCID: PMC7316001
- DOI: 10.1364/BOE.394229
Ultra-high-resolution SD-OCM imaging with a compact polarization-aligned 840 nm broadband combined-SLED source
Richard Haindl et al. Biomed Opt Express. 2020.
Abstract
We analyze the influence of intrinsic polarization alignment on image quality and axial resolution employing a broadband 840 nm light source with an optical bandwidth of 160 nm and an output power of 12 mW tailored for spectral-domain optical coherence microscopy (SD-OCM) applications. Three superluminescent diodes (SLEDs) are integrated into a 14-pin butterfly module using a free-space micro-optical bench architecture, maintaining a constant polarization state across the full spectral output. We demonstrate superior imaging performance in comparison to traditionally coupled-SLED broadband light sources in a teleost model organism in-vivo.
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
Conflict of interest statement
Marcus Duelk (FEP), Stefan Gloor (FEP), Jean Dahdah (FEP), José Ojeda (FEP) are collaborators of EXALOS AG. EXALOS provided light sources for testing to the Medical University of Vienna. The authors declare no other conflicts of interest.
Figures
Fig. 1.
Ultra-high-resolution SD-OCM system. (a) System sketch. (b) 14-pin butterfly combi-SLED module (yellow ellipse) on OEM driver board EBD9200. (c) Open combi-SLED module with 3 SLEDs (D1, D2, D3); DM: Dichroic mirror; L1 to L3: Collimation lenses; F: Optical fiber; L: Focusing lens; PD: Monitoring photodiode; Green, yellow and magenta dotted arrows: Optical beam path for the individual diodes D1, D2 and D3 respectively; Red dotted arrow: Common optical beam path.
Fig. 2.
ASE spectrum and calculated coherence function. (a, b): Linear ASE spectrum of the EBD29 and EBS30. (c, d): calculated linear coherence function of the EBD29 and EBS30. The corresponding bandwidths and calculated axial resolutions can be found in Table 1.
Fig. 3.
Polarization dependent spectral intensity variations of the EBD29 and EBS30 SLEDs measured with a commercial spectrometer (AVS-USB2000, Avantes). (a, b) Spectral intensity for the EBD29 and EBS30. Polarization state 1: magenta; Polarization state 2: blue; Polarization state 3: green. (c, d) Ratio between polarization state 1 and 3 (magenta), 1 and 2 (blue), 2 and 3 (green) for the EBD29 and EBS30.
Fig. 4.
Input polarization dependent OCM coherence function. The coherence functions are acquired at 500 µm distance to the zero delay. (a, b) Coherence function of the EBD29 and EBS30. Magenta: input polarization 1; blue: input polarization 2.
Fig. 5.
Interference pattern and coherence function for the EBD29 and EBS30 light sources for different quarter-wave plate orientations. (a) Graphical illustration for horizontally polarized light (H) traversing a quarter-wave plate (λ/4, 45° fast-axis orientation) a second time after being reflected by a mirror. V: vertically polarized light; Circular arrow: chirality of circularly polarized light. (b) Color coding for various fast-axis orientations of the quarter-wave plate. (c, d) Interference pattern produced by the EBD29 and EBS30 light source for three quarter-wave plate orientations. (e, f) Coherence functions produced by the EBD29 and EBS30 light source for three quarter-wave plate orientations. The coherence functions are acquired at 500 µm distance to the zero delay.
Fig. 6.
Averaged (10x) intensity B-scans of a zebrafish larva acquired for two polarization states with two light sources. Fiber polarization controller position 1 corresponds to a horizontal linear and position 2 to a circular polarization state. The polarization states are measured for the EBD29 light source with a PAX5710IR1-T TXP polarimeter. (a, b) Polarization state 1 and 2 acquired with the EBD29 light source. (c, d) Polarization state 1 and 2 acquired with the EBS30 light source. Blue marks: regions of interest; Yellow arrows: artifacts caused by PSF side lobes; Magenta arrows: polarization dependent PSF side lobe amplitudes; Green arrows: same speckle in all images; Green star: highest visibility for polarization state dependent signal amplitudes; Magenta triangles: caudal vein (left) and dorsal aorta (right); YS: yolk sack; MT: myotomes (large muscle segments); NC: notochord; SC: spinal cord
Similar articles
- A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography.
Wang H, Jenkins MW, Rollins AM. Wang H, et al. Opt Commun. 2008 Apr 1;281(7):10.1016/j.optcom.2007.08.073. doi: 10.1016/j.optcom.2007.08.073. Opt Commun. 2008. PMID: 24347689 Free PMC article. - Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.
Ko T, Adler D, Fujimoto J, Mamedov D, Prokhorov V, Shidlovski V, Yakubovich S. Ko T, et al. Opt Express. 2004 May 17;12(10):2112-9. doi: 10.1364/opex.12.002112. Opt Express. 2004. PMID: 19475046 - Broadband Quantum Dot Superluminescent Diode with Simultaneous Three-State Emission.
Jiang C, Wang H, Chen H, Dai H, Zhang Z, Li X, Yao Z. Jiang C, et al. Nanomaterials (Basel). 2022 Apr 22;12(9):1431. doi: 10.3390/nano12091431. Nanomaterials (Basel). 2022. PMID: 35564140 Free PMC article. - High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
Yamanaka M, Hayakawa N, Nishizawa N. Yamanaka M, et al. J Biomed Opt. 2019 Jul;24(7):1-4. doi: 10.1117/1.JBO.24.7.070502. J Biomed Opt. 2019. PMID: 31364330 Free PMC article. - In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.
Rector DM, Yao X, Harper RM, George JS. Rector DM, et al. In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5. In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5. PMID: 26844322 Free Books & Documents. Review.
Cited by
- Polarization-insensitive optical coherence tomography using pseudo-depolarized reference light for mitigating birefringence-related image artifacts.
Varaka M, Merkle CW, May L, Worm S, Augustin M, Fanjul-Vélez F, Lee HC, Wöhrer A, Glösmann M, Baumann B. Varaka M, et al. J Biomed Opt. 2024 Nov;29(11):116001. doi: 10.1117/1.JBO.29.11.116001. Epub 2024 Nov 4. J Biomed Opt. 2024. PMID: 39502366 Free PMC article. - Corneal imaging with blue-light optical coherence microscopy.
Khan S, Neuhaus K, Thaware O, Ni S, Ju MJ, Redd T, Huang D, Jian Y. Khan S, et al. Biomed Opt Express. 2022 Aug 30;13(9):5004-5014. doi: 10.1364/BOE.465707. eCollection 2022 Sep 1. Biomed Opt Express. 2022. PMID: 36187260 Free PMC article. - Reconstruction of visible light optical coherence tomography images retrieved from discontinuous spectral data using a conditional generative adversarial network.
Lichtenegger A, Salas M, Sing A, Duelk M, Licandro R, Gesperger J, Baumann B, Drexler W, Leitgeb RA. Lichtenegger A, et al. Biomed Opt Express. 2021 Oct 7;12(11):6780-6795. doi: 10.1364/BOE.435124. eCollection 2021 Nov 1. Biomed Opt Express. 2021. PMID: 34858680 Free PMC article. - Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography.
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Leitgeb R, et al. J Biomed Opt. 2021 Oct;26(10):100601. doi: 10.1117/1.JBO.26.10.100601. J Biomed Opt. 2021. PMID: 34672145 Free PMC article. Review. - Ultrasound-induced reorientation for multi-angle optical coherence tomography.
Kvåle Løvmo M, Deng S, Moser S, Leitgeb R, Drexler W, Ritsch-Marte M. Kvåle Løvmo M, et al. Nat Commun. 2024 Mar 16;15(1):2391. doi: 10.1038/s41467-024-46506-2. Nat Commun. 2024. PMID: 38493195 Free PMC article.
References
- Chen Z., Rank E., Meiburger K. M., Sinz C., Hodul A., Zhang E., Hoover E., Minneman M., Ensher J., Beard P. C., Kittler H., Leitgeb R. A., Drexler W., Liu M., “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).10.1038/s41598-017-18331-9 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources