Q-Rank: Reinforcement Learning for Recommending Algorithms to Predict Drug Sensitivity to Cancer Therapy - PubMed (original) (raw)
Q-Rank: Reinforcement Learning for Recommending Algorithms to Predict Drug Sensitivity to Cancer Therapy
Salma Daoud et al. IEEE J Biomed Health Inform. 2020 Nov.
Abstract
In personalized medicine, a challenging task is to identify the most effective treatment for a patient. In oncology, several computational models have been developed to predict the response of drugs to therapy. However, the performance of these models depends on multiple factors. This paper presents a new approach, called Q-Rank, to predict the sensitivity of cell lines to anti-cancer drugs. Q-Rank integrates different prediction algorithms and identifies a suitable algorithm for a given application. Q-Rank is based on reinforcement learning methods to rank prediction algorithms on the basis of relevant features (e.g., omics characterization). The best-ranked algorithm is recommended and used to predict the response of drugs to therapy. Our experimental results indicate that Q-Rank outperforms the integrated models in predicting the sensitivity of cell lines to different drugs.
Similar articles
- Drug Selection via Joint Push and Learning to Rank.
He Y, Liu J, Ning X. He Y, et al. IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):110-123. doi: 10.1109/TCBB.2018.2848908. Epub 2018 Jun 25. IEEE/ACM Trans Comput Biol Bioinform. 2020. PMID: 29994481 - Kernelized rank learning for personalized drug recommendation.
He X, Folkman L, Borgwardt K. He X, et al. Bioinformatics. 2018 Aug 15;34(16):2808-2816. doi: 10.1093/bioinformatics/bty132. Bioinformatics. 2018. PMID: 29528376 Free PMC article. - Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction.
Sotudian S, Paschalidis IC. Sotudian S, et al. IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2324-2333. doi: 10.1109/TCBB.2021.3084562. Epub 2022 Aug 8. IEEE/ACM Trans Comput Biol Bioinform. 2022. PMID: 34043512 Free PMC article. - Cancer Cell Line Panels Empower Genomics-Based Discovery of Precision Cancer Medicine.
Kim HS, Sung YJ, Paik S. Kim HS, et al. Yonsei Med J. 2015 Sep;56(5):1186-98. doi: 10.3349/ymj.2015.56.5.1186. Yonsei Med J. 2015. PMID: 26256959 Free PMC article. Review. - Detecting Personalized Determinants During Drug Treatment from Omics Big Data.
Wang L, Yu X, Zhang C, Zeng T. Wang L, et al. Curr Pharm Des. 2018;24(32):3727-3738. doi: 10.2174/1381612824666181106102111. Curr Pharm Des. 2018. PMID: 30398110 Review.
Cited by
- Deep learning methods for drug response prediction in cancer: Predominant and emerging trends.
Partin A, Brettin TS, Zhu Y, Narykov O, Clyde A, Overbeek J, Stevens RL. Partin A, et al. Front Med (Lausanne). 2023 Feb 15;10:1086097. doi: 10.3389/fmed.2023.1086097. eCollection 2023. Front Med (Lausanne). 2023. PMID: 36873878 Free PMC article. Review. - Leveraging physiology and artificial intelligence to deliver advancements in health care.
Zhang A, Wu Z, Wu E, Wu M, Snyder MP, Zou J, Wu JC. Zhang A, et al. Physiol Rev. 2023 Oct 1;103(4):2423-2450. doi: 10.1152/physrev.00033.2022. Epub 2023 Apr 27. Physiol Rev. 2023. PMID: 37104717 Free PMC article. Review. - DeepDRA: Drug repurposing using multi-omics data integration with autoencoders.
Mohammadzadeh-Vardin T, Ghareyazi A, Gharizadeh A, Abbasi K, Rabiee HR. Mohammadzadeh-Vardin T, et al. PLoS One. 2024 Jul 26;19(7):e0307649. doi: 10.1371/journal.pone.0307649. eCollection 2024. PLoS One. 2024. PMID: 39058696 Free PMC article. - Reinforcement Learning for Precision Oncology.
Eckardt JN, Wendt K, Bornhäuser M, Middeke JM. Eckardt JN, et al. Cancers (Basel). 2021 Sep 15;13(18):4624. doi: 10.3390/cancers13184624. Cancers (Basel). 2021. PMID: 34572853 Free PMC article. Review. - Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information.
Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K, Hirata M, Sunami K, Kubo T, Takasawa K, Takahashi S, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Yatabe Y, Yamamoto N. Hamamoto R, et al. Exp Hematol Oncol. 2022 Oct 31;11(1):82. doi: 10.1186/s40164-022-00333-7. Exp Hematol Oncol. 2022. PMID: 36316731 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical