Intrigue surrounding the life-cycles of species of Clistobothrium (Cestoda: Phyllobothriidea) parasitising large pelagic sharks - PubMed (original) (raw)
. 2020 Nov;50(13):1043-1055.
doi: 10.1016/j.ijpara.2020.08.002. Epub 2020 Sep 23.
Affiliations
- PMID: 32979336
- DOI: 10.1016/j.ijpara.2020.08.002
Intrigue surrounding the life-cycles of species of Clistobothrium (Cestoda: Phyllobothriidea) parasitising large pelagic sharks
Janine N Caira et al. Int J Parasitol. 2020 Nov.
Abstract
This study aimed to locate the adults, and thus also the definitive hosts, of three species of marine mammal-parasitising larval cestodes that have molecular affinities with Clistobothrium. New collections led to the discovery of adults of two new species of Clistobothrium, one from the longfin mako shark and one from the salmon shark. New material of Clistobothrium tumidum was collected from the great white shark and new material of a previously reported undescribed species of Clistobothrium was collected from the porbeagle shark. Larvae of Clistobothrium were opportunistically collected from sockeye salmon and four species of small squaliform sharks. Sequence data for the D1-D3 region of the 28S rDNA gene were generated for all but one of these taxa. The tree resulting from maximum likelihood analysis of those data, in combination with comparable data from GenBank, indicates that squaliform sharks can serve as intermediate hosts for the species from the porbeagle shark. The larvae from salmon exhibit a unique molecular signature and, based on diet data, may be conspecific with adults from the salmon shark. Informed by sequence data for new material of Monorygma and existing data for Phyllobothrium, the larvae provisionally identified as Monorygma grimaldii and Phyllobothrium delphini were formally transferred to Clistobothrium. Especially puzzling was that the molecular signatures of none of the eight species of Clistobothrium match those of the three marine mammal-parasitising larval forms. We are at a loss as to where else to look for the three corresponding adult forms. The great white shark remains the most likely candidate given it consumes marine mammals with some regularity, but seems unlikely to host five species of Clistobothrium. Alternatively, we are left wondering if the large marine mammal predator Carcharocles megalodon may not be extinct after all.
Keywords: Carcharocles megalodon; Clistobothrium; Clistobothrium delphini; Host associations; Lamniform sharks; Life-cycles; Marine tapeworms; Trophic transmission; grimaldii.
Copyright © 2020 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Similar articles
- Larvae of Clistobothrium grimaldii (Cestoda: Phyllobothriidea) from a Cape fur seal (Arctocephalus pusillus pusillus) kept in a zoo in Japan.
Masuda A, Tokunaga U, Ozawa K, Matsumoto J. Masuda A, et al. J Vet Med Sci. 2023 Mar 13;85(3):340-343. doi: 10.1292/jvms.22-0349. Epub 2023 Jan 24. J Vet Med Sci. 2023. PMID: 36696999 Free PMC article. - Insight into the role of cetaceans in the life cycle of the tetraphyllideans (Platyhelminthes: Cestoda).
Aznar FJ, Agustí C, Littlewood DT, Raga JA, Olson PD. Aznar FJ, et al. Int J Parasitol. 2007 Feb;37(2):243-55. doi: 10.1016/j.ijpara.2006.10.010. Epub 2006 Nov 27. Int J Parasitol. 2007. PMID: 17161403 - Insights using a molecular approach into the life cycle of a tapeworm infecting great white sharks.
Randhawa HS. Randhawa HS. J Parasitol. 2011 Apr;97(2):275-80. doi: 10.1645/GE-2530.1. Epub 2010 Oct 8. J Parasitol. 2011. PMID: 21506792 - Diet Composition and Trophic Ecology of Northeast Pacific Ocean Sharks.
Bizzarro JJ, Carlisle AB, Smith WD, Cortés E. Bizzarro JJ, et al. Adv Mar Biol. 2017;77:111-148. doi: 10.1016/bs.amb.2017.06.001. Epub 2017 Aug 18. Adv Mar Biol. 2017. PMID: 28882212 Review. - A digest of elasmobranch tapeworms.
Caira JN, Jensen K. Caira JN, et al. J Parasitol. 2014 Aug;100(4):373-91. doi: 10.1645/14-516.1. Epub 2014 May 20. J Parasitol. 2014. PMID: 24845052 Review.
Cited by
- Molecular investigation of endoparasites of marine mammals (Cetacea: Mysticeti, Odontoceti) in the Western Mediterranean.
Specht NR, Keve G, Fernández-Maldonado C, Caro AC, Takács N, Kontschán J, Hornok S. Specht NR, et al. Front Vet Sci. 2024 Sep 10;11:1431625. doi: 10.3389/fvets.2024.1431625. eCollection 2024. Front Vet Sci. 2024. PMID: 39318600 Free PMC article. - Parasite assemblages in volatile host stocks: inter- and intra-cohort variability restrict their value as biological tags for squid stock assessment.
Gutiérrez MP, Canel D, Braicovich PE, Lanfranchi AL, Irigoitia MM, Ivanovic ML, Prandoni NI, Elena B, Timi JT. Gutiérrez MP, et al. Parasitology. 2023 Nov;150(13):1254-1262. doi: 10.1017/S0031182023001051. Epub 2023 Nov 6. Parasitology. 2023. PMID: 37929573 Free PMC article. - Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and prospects.
Scholz T, Kuchta R. Scholz T, et al. Parasitology. 2022 Dec;149(14):1876-1893. doi: 10.1017/S0031182022001202. Epub 2022 Aug 25. Parasitology. 2022. PMID: 36004800 Free PMC article. Review. - Larvae of Clistobothrium grimaldii (Cestoda: Phyllobothriidea) from a Cape fur seal (Arctocephalus pusillus pusillus) kept in a zoo in Japan.
Masuda A, Tokunaga U, Ozawa K, Matsumoto J. Masuda A, et al. J Vet Med Sci. 2023 Mar 13;85(3):340-343. doi: 10.1292/jvms.22-0349. Epub 2023 Jan 24. J Vet Med Sci. 2023. PMID: 36696999 Free PMC article. - A synergistic, global approach to revising the trypanorhynch tapeworm family Rhinoptericolidae (Trypanobatoida).
Herzog KS, Jensen K. Herzog KS, et al. PeerJ. 2022 Feb 11;10:e12865. doi: 10.7717/peerj.12865. eCollection 2022. PeerJ. 2022. PMID: 35186470 Free PMC article.