Mechanism of action of Escherichia coli endonuclease III - PubMed (original) (raw)

. 1987 Dec 15;26(25):8200-6.

doi: 10.1021/bi00399a027.

Affiliations

Mechanism of action of Escherichia coli endonuclease III

Y W Kow et al. Biochemistry. 1987.

Abstract

Endonuclease III isolated from Escherichia coli has been shown to have both N-glycosylase and apurinic/apyrimidinic (AP) endonuclease activities. A nicking assay was used to show that the enzyme exhibited a preference for form I DNA when DNA containing thymine glycol was used as a substrate. This preference was reduced or eliminated either when the DNA was relaxed or when the type of damage was altered to urea residues or AP sites. The combined N-glycosylase/AP endonuclease activity was at least 10-fold higher than the AP endonuclease activity alone when urea-containing DNA was used as a substrate as compared to AP DNA. When DNA containing thymine glycol was used as a substrate, the combined N-glycosylase/AP endonuclease activity was about 2-fold higher than the AP endonuclease activity. Yet, when DNA containing thymine glycol or urea was used as substrate, no apurinic sites remained. Furthermore, magnesium selectively inhibited endonuclease III activity when AP DNA was used as a substrate but had no effect when DNA containing either urea or thymine glycol was used as substrate. These data suggest that both the N-glycosylase and AP endonuclease activities of endonuclease III reside on the same molecule or are in very tight association and that these activities act in concert, with the N-glycosylase reaction preceding the AP endonuclease reaction.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources