Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera - PubMed (original) (raw)
. 2021 Mar 12;371(6534):1152-1153.
doi: 10.1126/science.abg6105. Epub 2021 Jan 29.
Ann-Kathrin Wallisch 1, Bianca Sänger 1, Kena A Swanson 2, Julia Mühl 1, Wei Chen 2, Hui Cai 2, Daniel Maurus 1, Ritu Sarkar 2, Özlem Türeci 1, Philip R Dormitzer 2, Uğur Şahin 3 4
Affiliations
- PMID: 33514629
- PMCID: PMC7971771
- DOI: 10.1126/science.abg6105
Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera
Alexander Muik et al. Science. 2021.
Abstract
Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage called B.1.1.7 (variant of concern: VOC 202012/01), which is reported to spread more efficiently and faster than other strains, emerged in the United Kingdom. This variant has an unusually large number of mutations, with 10 amino acid changes in the spike (S) protein, raising concerns that its recognition by neutralizing antibodies may be affected. In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA-based COVID-19 vaccine BNT162b2. The immune sera had slightly reduced but overall largely preserved neutralizing titers against the B.1.1.7 lineage pseudovirus. These data indicate that the B.1.1.7 lineage will not escape BNT162b2-mediated protection.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Figures
Fig. 1. 50% pseudovirus neutralization titers (pVNT50) of 40 sera from BNT162b2 vaccine recipients against VSV-SARS-CoV-2-S pseudovirus bearing the Wuhan reference strain or lineage B.1.1.7 spike protein.
Sera from n = 26 younger adults (aged 23 to 55 years; indicated by triangles) and n = 14 older adults (aged 57 to 73 years; indicated by circles) drawn at either day 29 or day 43 (7 or 21 days after vaccine dose two) were tested. Statistical significance of the difference between the neutralization of the VSV-SARS-CoV-2-S pseudovirus bearing the Wuhan or lineage B.1.1.7 spike protein was calculated by a Wilcoxon matched-pairs signed rank test. Two-tailed P values are reported. GMTs and 95% CIs are indicated.
Fig. 2. pVNT50 ratio of SARS-CoV-2 lineage B.1.1.7 to Wuhan reference strain spike–pseudotyped VSV.
Triangles represent sera from younger adults (aged 23 to 55 years), and circles represent sera from older adults (aged 57 to 73 years). Sera were drawn on either day 29 or day 43 (7 or 21 days after vaccine dose two). Geometric means of the pVNT50 ratios of SARS-CoV-2 lineage B.1.1.7 to Wuhan spike–pseudotyped VSV and 95% CIs are indicated. The difference in distribution of titer ratios between younger and older adults was tested for statistical significance with a two-tailed Mann-Whitney U test.
Comment in
- Immunity to SARS-CoV-2 variants of concern.
Altmann DM, Boyton RJ, Beale R. Altmann DM, et al. Science. 2021 Mar 12;371(6534):1103-1104. doi: 10.1126/science.abg7404. Science. 2021. PMID: 33707254 No abstract available.
Similar articles
- Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera.
Muik A, Lui BG, Wallisch AK, Bacher M, Mühl J, Reinholz J, Ozhelvaci O, Beckmann N, Güimil Garcia RC, Poran A, Shpyro S, Finlayson A, Cai H, Yang Q, Swanson KA, Türeci Ö, Şahin U. Muik A, et al. Science. 2022 Feb 11;375(6581):678-680. doi: 10.1126/science.abn7591. Epub 2022 Jan 18. Science. 2022. PMID: 35040667 Free PMC article. - Serosurvey in BNT162b2 vaccine-elicited neutralizing antibodies against authentic B.1, B.1.1.7, B.1.351, B.1.525 and P.1 SARS-CoV-2 variants.
Zani A, Caccuri F, Messali S, Bonfanti C, Caruso A. Zani A, et al. Emerg Microbes Infect. 2021 Dec;10(1):1241-1243. doi: 10.1080/22221751.2021.1940305. Emerg Microbes Infect. 2021. PMID: 34092181 Free PMC article. - BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants.
Liu J, Liu Y, Xia H, Zou J, Weaver SC, Swanson KA, Cai H, Cutler M, Cooper D, Muik A, Jansen KU, Sahin U, Xie X, Dormitzer PR, Shi PY. Liu J, et al. Nature. 2021 Aug;596(7871):273-275. doi: 10.1038/s41586-021-03693-y. Epub 2021 Jun 10. Nature. 2021. PMID: 34111888 - Will Mutations in the Spike Protein of SARS-CoV-2 Lead to the Failure of COVID-19 Vaccines?
Jia Z, Gong W. Jia Z, et al. J Korean Med Sci. 2021 May 10;36(18):e124. doi: 10.3346/jkms.2021.36.e124. J Korean Med Sci. 2021. PMID: 33975397 Free PMC article. Review. - BNT162b2 mRNA COVID-19 Vaccine: First Approval.
Lamb YN. Lamb YN. Drugs. 2021 Mar;81(4):495-501. doi: 10.1007/s40265-021-01480-7. Drugs. 2021. PMID: 33683637 Free PMC article. Review.
Cited by
- A T cell-based SARS-CoV-2 spike protein vaccine provides protection without antibodies.
Shi J, Zheng J, Zhang X, Tai W, Compas R, Deno J, Jachym N, Verma AK, Wang G, Guan X, Odle AE, Wan Y, Li F, Perlman S, Qiao L, Du L. Shi J, et al. JCI Insight. 2024 Mar 8;9(5):e155789. doi: 10.1172/jci.insight.155789. JCI Insight. 2024. PMID: 38456504 Free PMC article. - Global research on RNA vaccines for COVID-19 from 2019 to 2023: a bibliometric analysis.
Chen Z, Liu Z, Feng Y, Shi A, Wu L, Sang Y, Li C. Chen Z, et al. Front Immunol. 2024 Feb 15;15:1259788. doi: 10.3389/fimmu.2024.1259788. eCollection 2024. Front Immunol. 2024. PMID: 38426106 Free PMC article. - SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition.
Fischer C, Willscher E, Paschold L, Gottschick C, Klee B, Diexer S, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Hoell JI, Gekle M, Addo MM, Schulze Zur Wiesch J, Mikolajczyk R, Binder M, Schultheiß C. Fischer C, et al. NPJ Vaccines. 2024 Feb 5;9(1):23. doi: 10.1038/s41541-024-00815-1. NPJ Vaccines. 2024. PMID: 38316833 Free PMC article. - Structural basis and analysis of hamster ACE2 binding to different SARS-CoV-2 spike RBDs.
Niu S, Zhao Z, Liu Z, Rong X, Chai Y, Bai B, Han P, Shang G, Ren J, Wang Y, Zhao X, Liu K, Tian W-x, Wang Q, Gao GF. Niu S, et al. J Virol. 2024 Mar 19;98(3):e0115723. doi: 10.1128/jvi.01157-23. Epub 2024 Feb 2. J Virol. 2024. PMID: 38305152 Free PMC article. - Comparing the immune response and protective effect of COVID-19 vaccine under different vaccination strategies.
Zhao T, Huang X, Shu Y. Zhao T, et al. Hum Vaccin Immunother. 2023 Dec 15;19(3):2273155. doi: 10.1080/21645515.2023.2273155. Epub 2023 Dec 19. Hum Vaccin Immunother. 2023. PMID: 38111370 Free PMC article. Review.
References
- Polack F. P., Thomas S. J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J. L., Pérez Marc G., Moreira E. D., Zerbini C., Bailey R., Swanson K. A., Roychoudhury S., Koury K., Li P., Kalina W. V., Cooper D., Frenck R. W. Jr.., Hammitt L. L., Türeci Ö., Nell H., Schaefer A., Ünal S., Tresnan D. B., Mather S., Dormitzer P. R., Şahin U., Jansen K. U., Gruber W. C.; C4591001 Clinical Trial Group , Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 383, 2603–2615 (2020). 10.1056/NEJMoa2034577 - DOI - PMC - PubMed
- A. Rambaut, N. Loman, O. Pybus, W. Barclay, J. Barrett, A. Carabelli, T. Connor, T. Peacock, D. L. Robertson, E. Volz; COVID-19 Genomics Consortium UK (CoG-UK), Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. virological.org (2020); https://virological.org/t/preliminary-genomic-characterisation-of-an-eme....
- E. Volz, S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hinsley, D. J. Laydon, G. Dabrera, Á. O’Toole, R. Amato, M. Ragonnet-Cronin, I. Harrison, B. Jackson, C. V. Ariani, O. Boyd, N. J. Loman, J. T. McCrone, S. Gonçalves, D. Jorgensen, R. Myers, V. Hill, D. K. Jackson, K. Gaythorpe, N. Groves, J. Sillitoe, D. P. Kwiatkowski, The COVID-19 Genomics UK (COG-UK) consortium, S. Flaxman, O. Ratmann, S. Bhatt, S. Hopkins, A. Gandy, A. Rambaut, N. M. Ferguson, Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv 2020.12.30.20249034 [Preprint]. 4 January 2021. 10.1101/2020.12.30.20249034.10.1101/2020.12.30.20249034 - DOI - DOI
- Starr T. N., Greaney A. J., Hilton S. K., Ellis D., Crawford K. H. D., Dingens A. S., Navarro M. J., Bowen J. E., Tortorici M. A., Walls A. C., King N. P., Veesler D., Bloom J. D., Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295–1310.e20 (2020). 10.1016/j.cell.2020.08.012 - DOI - PMC - PubMed
- Gu H., Chen Q., Yang G., He L., Fan H., Deng Y. Q., Wang Y., Teng Y., Zhao Z., Cui Y., Li Y., Li X. F., Li J., Zhang N. N., Yang X., Chen S., Guo Y., Zhao G., Wang X., Luo D. Y., Wang H., Yang X., Li Y., Han G., He Y., Zhou X., Geng S., Sheng X., Jiang S., Sun S., Qin C. F., Zhou Y., Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020). 10.1126/science.abc4730 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous