Karyotypic conservation in the mammalian order monotremata (subclass Prototheria) - PubMed (original) (raw)
Karyotypic conservation in the mammalian order monotremata (subclass Prototheria)
J M Wrigley et al. Chromosoma. 1988.
Abstract
The order Monotremata, comprising the platypus and two species of echidna (Australian and Nuigini) is the only extant representative of the mammalian subclass Prototheria, which diverged from subclass Theria (marsupials and placental mammals) 150-200 million years ago. The 2n = 63 male, 64 female karyotype (newly described here) of the Nuigini echidna is almost identical in morphology and G-band pattern to that of the Australian echidna, from which it diverged about a million years ago. The karyotype of the platypus (2n = 52) has several features in common with those of the echidna species; six pairs of large autosomes, many pairs of small (but not micro-) chromosomes, and a series of small unpaired chromosomes which form a multivalent at meiosis. Comparison of the G-band patterns of platypus and echidna autosomes reveals considerable homology. Chromomycin banding demonstrates GC-rich heterochromatin at the centromeres of many platypus and echidna chromosomes, and at the nucleolar organizing regions; some of this heterochromatin C-bands weakly in platypus (but not echidna) spreads. Late replication banding patterns resemble G-banding patterns and confirm the homologies between the species. Striking heteromorphism between chromosomes of some of the large autosomal pairs can be accounted for in the echidna by differences in amount of chromomycin-bright, late replicating heterochromatin. The sex chromosomes in all three species also bear striking homology, despite the difference in sex determination mechanism between platypus (XX/XY) and the echidna species (X1X1X2X2/X1X2Y). The platypus X and echidna X1 each represent about 5.8% of haploid chromosome length, and are G-band identical. Y chromosomes are similar between species, and are largely homologous to the X (or X1).
Similar articles
- The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z.
Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov VA, Skelton H, Wallis MC, Johnston S, Veyrunes F, Graves JA, Ferguson-Smith MA. Rens W, et al. Genome Biol. 2007;8(11):R243. doi: 10.1186/gb-2007-8-11-r243. Genome Biol. 2007. PMID: 18021405 Free PMC article. - Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes.
Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JA. Wallis MC, et al. Chromosome Res. 2007;15(8):949-59. doi: 10.1007/s10577-007-1185-3. Epub 2008 Jan 9. Chromosome Res. 2007. PMID: 18185981 - Monotremes and the evolution of rapid eye movement sleep.
Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD. Siegel JM, et al. Philos Trans R Soc Lond B Biol Sci. 1998 Jul 29;353(1372):1147-57. doi: 10.1098/rstb.1998.0272. Philos Trans R Soc Lond B Biol Sci. 1998. PMID: 9720111 Free PMC article. Review. - Location, location, location! Monotremes provide unique insights into the evolution of sex chromosome silencing in mammals.
Daish T, Grützner F. Daish T, et al. DNA Cell Biol. 2009 Feb;28(2):91-100. doi: 10.1089/dna.2008.0818. DNA Cell Biol. 2009. PMID: 19196046 Review.
Cited by
- Tracing the evolution of amniote chromosomes.
Deakin JE, Ezaz T. Deakin JE, et al. Chromosoma. 2014 Jun;123(3):201-16. doi: 10.1007/s00412-014-0456-y. Epub 2014 Mar 25. Chromosoma. 2014. PMID: 24664317 Free PMC article. Review. - Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes.
Romiguier J, Ranwez V, Douzery EJ, Galtier N. Romiguier J, et al. Genome Res. 2010 Aug;20(8):1001-9. doi: 10.1101/gr.104372.109. Epub 2010 Jun 7. Genome Res. 2010. PMID: 20530252 Free PMC article. - Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.
Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, Grützner F, Deakin JE, Whittington CM, Schatzkamer K, Kremitzki CL, Graves T, Ferguson-Smith MA, Warren W, Marshall Graves JA. Veyrunes F, et al. Genome Res. 2008 Jun;18(6):965-73. doi: 10.1101/gr.7101908. Epub 2008 May 7. Genome Res. 2008. PMID: 18463302 Free PMC article. - Core-SINE blocks comprise a large fraction of monotreme genomes; implications for vertebrate chromosome evolution.
Kirby PJ, Greaves IK, Koina E, Waters PD, Marshall Graves JA. Kirby PJ, et al. Chromosome Res. 2007;15(8):975-84. doi: 10.1007/s10577-007-1187-1. Epub 2008 Jan 9. Chromosome Res. 2007. PMID: 18185983 - Characterizing the chromosomes of the platypus (Ornithorhynchus anatinus).
McMillan D, Miethke P, Alsop AE, Rens W, O'Brien P, Trifonov V, Veyrunes F, Schatzkamer K, Kremitzki CL, Graves T, Warren W, Grützner F, Ferguson-Smith MA, Graves JA. McMillan D, et al. Chromosome Res. 2007;15(8):961-74. doi: 10.1007/s10577-007-1186-2. Epub 2008 Jan 9. Chromosome Res. 2007. PMID: 18185982
References
- Experientia. 1979 Feb 15;35(2):283-5 - PubMed
- Proc Natl Acad Sci U S A. 1982 Nov;79(21):6631-5 - PubMed
- Chromosoma. 1959;10(1):1-72 - PubMed
- J Hered. 1988 Mar-Apr;79(2):115-8 - PubMed
- Cytogenet Cell Genet. 1985;39(1):40-50 - PubMed
MeSH terms
LinkOut - more resources
Miscellaneous