Microglial phagocytosis of neurons in neurodegeneration, and its regulation - PubMed (original) (raw)
Review
. 2021 Aug;158(3):621-639.
doi: 10.1111/jnc.15327. Epub 2021 Mar 17.
Affiliations
- PMID: 33608912
- DOI: 10.1111/jnc.15327
Free article
Review
Microglial phagocytosis of neurons in neurodegeneration, and its regulation
Claire A Butler et al. J Neurochem. 2021 Aug.
Free article
Abstract
There is growing evidence that excessive microglial phagocytosis of neurons and synapses contributes to multiple brain pathologies. RNA-seq and genome-wide association (GWAS) studies have linked multiple phagocytic genes to neurodegenerative diseases, and knock-out of phagocytic genes has been found to protect against neurodegeneration in animal models, suggesting that excessive microglial phagocytosis contributes to neurodegeneration. Here, we review recent evidence that microglial phagocytosis of live neurons and synapses causes neurodegeneration in animal models of Alzheimer's disease and other tauopathies, Parkinson's disease, frontotemporal dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced by ischaemia, infection or ageing. We also review factors regulating microglial phagocytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreticulin, UDP, CD47, sialylation, complement, galectin-3, Apolipoprotein E, phagocytic receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. Some of these factors may be potential treatment targets to prevent neurodegeneration mediated by excessive microglial phagocytosis of live neurons and synapses.
Keywords: Alzheimer's disease; Parkinson's disease; ageing; microglia; neurodegeneration; neuroinflammation; phagocytosis.
© 2021 International Society for Neurochemistry.
Similar articles
- The microglial P2Y6 receptor as a therapeutic target for neurodegenerative diseases.
Dundee JM, Brown GC. Dundee JM, et al. Transl Neurodegener. 2024 Sep 7;13(1):47. doi: 10.1186/s40035-024-00438-5. Transl Neurodegener. 2024. PMID: 39243044 Free PMC article. Review. - Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression.
Azam S, Haque ME, Kim IS, Choi DK. Azam S, et al. Cells. 2021 Jan 14;10(1):150. doi: 10.3390/cells10010150. Cells. 2021. PMID: 33466587 Free PMC article. Review. - Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons.
Brown GC. Brown GC. Int J Mol Sci. 2021 Dec 14;22(24):13442. doi: 10.3390/ijms222413442. Int J Mol Sci. 2021. PMID: 34948237 Free PMC article. Review. - The microglial P2Y6 receptor mediates neuronal loss and memory deficits in neurodegeneration.
Puigdellívol M, Milde S, Vilalta A, Cockram TOJ, Allendorf DH, Lee JY, Dundee JM, Pampuščenko K, Borutaite V, Nuthall HN, Brelstaff JH, Spillantini MG, Brown GC. Puigdellívol M, et al. Cell Rep. 2021 Dec 28;37(13):110148. doi: 10.1016/j.celrep.2021.110148. Cell Rep. 2021. PMID: 34965424 Free PMC article. - Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease.
Vilalta A, Brown GC. Vilalta A, et al. FEBS J. 2018 Oct;285(19):3566-3575. doi: 10.1111/febs.14323. Epub 2017 Nov 29. FEBS J. 2018. PMID: 29125686 Review.
Cited by
- Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer's disease through PI3K-Akt signaling.
Jiang M, Zhao D, Zhou Y, Kong W, Xie Z, Xiong Y, Li Y, Zhao S, Kou X, Zhang S, Meng R, Pan Y, Wu Z, Nakanishi H, Zhao J, Li H, Quan Z, Lin L, Qing H, Ni J. Jiang M, et al. Neuropsychopharmacology. 2024 Sep 20. doi: 10.1038/s41386-024-01994-0. Online ahead of print. Neuropsychopharmacology. 2024. PMID: 39304744 - The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease.
Miao Y, Meng H. Miao Y, et al. Cell Commun Signal. 2024 Jan 12;22(1):31. doi: 10.1186/s12964-023-01402-y. Cell Commun Signal. 2024. PMID: 38216911 Free PMC article. Review. - Friend or foe: role of pathological tau in neuronal death.
Wu M, Chen Z, Jiang M, Bao B, Li D, Yin X, Wang X, Liu D, Zhu LQ. Wu M, et al. Mol Psychiatry. 2023 Jun;28(6):2215-2227. doi: 10.1038/s41380-023-02024-z. Epub 2023 Mar 14. Mol Psychiatry. 2023. PMID: 36918705 Review. - Imeglimin Is Neuroprotective Against Ischemic Brain Injury in Rats-a Study Evaluating Neuroinflammation and Mitochondrial Functions.
Zemgulyte G, Umbrasas D, Cizas P, Jankeviciute S, Pampuscenko K, Grigaleviciute R, Rastenyte D, Borutaite V. Zemgulyte G, et al. Mol Neurobiol. 2022 May;59(5):2977-2991. doi: 10.1007/s12035-022-02765-y. Epub 2022 Mar 7. Mol Neurobiol. 2022. PMID: 35257284 - Enriched environment remodels the central immune environment and improves the prognosis of acute ischemic stroke in elderly mice with chronic ischemia.
Zhang S, Zhang Y, Liu H, Wu F, Wang Z, Li L, Huang H, Qiu S, Li Y. Zhang S, et al. Front Immunol. 2023 Mar 9;14:1114596. doi: 10.3389/fimmu.2023.1114596. eCollection 2023. Front Immunol. 2023. PMID: 36969204 Free PMC article.
References
- Ahmad, S., Kindelin, A., Khan, S., Ahmed, M., Hoda, M., Bhatia, K., & Ducruet, A. (2019). C3a receptor inhibition protects brain endothelial cells against oxygen-glucose deprivation/reperfusion. Experimental Neurobiology, 28(2), 216-228. https://doi.org/10.5607/en.2019.28.2.216
- Alawieh, A., Langley, E., Feng, W., Spiotta, A., & Tomlinson, S. (2020). Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy. Journal of Neuroscience, 40(20), 4042-4058. https://doi.org/10.1523/JNEUROSCI.2462-19.2020
- Alawieh, A., Langley, E., Weber, S., Adkins, D., & Tomlinson, S. (2018). Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. Journal of Neuroscience, 38(10), 2519-2532. https://doi.org/10.1523/JNEUROSCI.2197-17.2018
- Al-Dalahmah, O., Thakur, K., Nordvig, A., Prust, M., Roth, W., Lignelli, A., Uhlemann, A., Miller, E., Kunnath-Velayudhan, S., Del Portillo, A., Liu, Y., Hargus, G., Teich, A., Hickman, R., Tanji, K., Goldman, J., Faust, P., & Canoll, P. (2020). Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathologica Communications, 8(1), 147. https://doi.org/10.1186/s40478-020-01024-2
- Allendorf, D., Franssen, E., & Brown, G. (2020). Lipopolysaccharide activates microglia via neuraminidase 1 desialylation of Toll-like Receptor 4. Journal of Neurochemistry, 155(4), 403-416. https://doi.org/10.1111/jnc.15024
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials