Intraspecific comparative genomics to identify avirulence genes from Phytophthora - PubMed (original) (raw)
Review
Intraspecific comparative genomics to identify avirulence genes from Phytophthora
Jorunn I B Bos et al. New Phytol. 2003 Jul.
Free article
Abstract
Members of the oomycete genus Phytophthora cause some of the most devastating plant diseases in the world and are arguably the most destructive pathogens of dicot plants. Phytophthora research has entered the genomics era. Current genomic resources include expressed sequence tags from a variety of developmental and infection stages, as well as sequences of selected regions of Phytophthora genomes. Genomics promise to impact upon our understanding of the molecular basis of infection by Phytophthora, for example, by facilitating the isolation of genes encoding effector molecules with a role in virulence and avirulence. Based on prevalent models of plant-pathogen coevolution, some of these effectors, notably those with avirulence functions, are predicted to exhibit significant sequence variation within populations of the pathogen. This and other features were used to identify candidate avirulence genes from sequence databases. Here, we describe a strategy that combines data mining with intraspecific comparative genomics and functional analyses for the identification of novel avirulence genes from Phytophthora. This approach provides a rapid and efficient alternative to classical positional cloning strategies for identifying avirulence genes that match known resistance genes. In addition, this approach has the potential to uncover 'orphan' avirulence genes for which corresponding resistance genes have not previously been characterized.
Keywords: Phytophthora; avirulence; functional and comparative genomics; host-specificity; oomycetes; plant-microbe interactions.
Similar articles
- Effector Repertoire of Phytophthora betacei: In Search of Possible Virulence Factors Responsible for Its Host Specificity.
Rojas-Estevez P, Urbina-Gómez DA, Ayala-Usma DA, Guayazan-Palacios N, Mideros MF, Bernal AJ, Cardenas M, Restrepo S. Rojas-Estevez P, et al. Front Genet. 2020 Jun 9;11:579. doi: 10.3389/fgene.2020.00579. eCollection 2020. Front Genet. 2020. PMID: 32582295 Free PMC article. - Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes.
Thilliez GJA, Armstrong MR, Lim TY, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Thilliez GJA, et al. New Phytol. 2019 Feb;221(3):1634-1648. doi: 10.1111/nph.15441. Epub 2018 Oct 5. New Phytol. 2019. PMID: 30288743 Free PMC article. - Molecular mechanisms of Phytophthora sojae avirulence effectors escaping host recognition.
Hou X, He Z, Che Z, Li H, Tan X, Wang Q. Hou X, et al. Front Microbiol. 2023 Jan 9;13:1111774. doi: 10.3389/fmicb.2022.1111774. eCollection 2022. Front Microbiol. 2023. PMID: 36699593 Free PMC article. Review. - Recent Progress in RXLR Effector Research.
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Anderson RG, et al. Mol Plant Microbe Interact. 2015 Oct;28(10):1063-72. doi: 10.1094/MPMI-01-15-0022-CR. Epub 2015 Oct 2. Mol Plant Microbe Interact. 2015. PMID: 26125490 Review. - Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes.
Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N, Lévesque CA, Buell CR. Adhikari BN, et al. PLoS One. 2013 Oct 4;8(10):e75072. doi: 10.1371/journal.pone.0075072. eCollection 2013. PLoS One. 2013. PMID: 24124466 Free PMC article.
Cited by
- Diverse mechanisms shape the evolution of virulence factors in the potato late blight pathogen Phytophthora infestans sampled from China.
Wu EJ, Yang LN, Zhu W, Chen XM, Shang LP, Zhan J. Wu EJ, et al. Sci Rep. 2016 May 19;6:26182. doi: 10.1038/srep26182. Sci Rep. 2016. PMID: 27193142 Free PMC article. - An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm.
Armstrong MR, Whisson SC, Pritchard L, Bos JI, Venter E, Avrova AO, Rehmany AP, Böhme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PR. Armstrong MR, et al. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71. doi: 10.1073/pnas.0500113102. Epub 2005 May 13. Proc Natl Acad Sci U S A. 2005. PMID: 15894622 Free PMC article. - Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities.
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Mazumdar P, et al. Planta. 2021 May 8;253(6):119. doi: 10.1007/s00425-021-03636-x. Planta. 2021. PMID: 33963935 Review. - A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease.
Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. Tian M, et al. Plant Physiol. 2007 Jan;143(1):364-77. doi: 10.1104/pp.106.090050. Epub 2006 Nov 3. Plant Physiol. 2007. PMID: 17085509 Free PMC article. - In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2.
Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JI, Liu HY, van Damme M, Morgan W, Choi D, Van der Vossen EA, Vleeshouwers VG, Kamoun S. Oh SK, et al. Plant Cell. 2009 Sep;21(9):2928-47. doi: 10.1105/tpc.109.068247. Epub 2009 Sep 30. Plant Cell. 2009. PMID: 19794118 Free PMC article.
References
- Baldauf SL, Roger, AJ, Wenk-Siefert I, Doolittle WF. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972-977. - PubMed
- Barton NH. 2000. Genetic hitchhiking. Philosophical Transactions of the Royal Society of London: Biological Sciences 355: 1553-1562.
- Birch PRJ, Whisson S. 2001. Phytophthora infestans enters the genomics era. Molecular Plant Pathology 2: 257-263.
- Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411: 826-833. - PubMed
- Dixon MS, Golstein C, Thomas CM, Van Der Biezen EA, Jones JD. 2000. Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proceedings of the National Academy of Sciences, USA 97: 8807-8814.
Publication types
LinkOut - more resources
Full Text Sources