Resistant starch, microbiome, and precision modulation - PubMed (original) (raw)
Review
Resistant starch, microbiome, and precision modulation
Peter A Dobranowski et al. Gut Microbes. 2021 Jan-Dec.
Abstract
Resistant starch, microbiome, and precision modulation. Mounting evidence has positioned the gut microbiome as a nexus of health. Modulating its phylogenetic composition and function has become an attractive therapeutic prospect. Resistant starches (granular amylase-resistant α-glycans) are available as physicochemically and morphologically distinguishable products. Attempts to leverage resistant starch as microbiome-modifying interventions in clinical studies have yielded remarkable inter-individual variation. Consequently, their utility as a potential therapy likely depends predominantly on the selected resistant starch and the subject's baseline microbiome. The purpose of this review is to detail i) the heterogeneity of resistant starches, ii) how resistant starch is sequentially degraded and fermented by specialized gut microbes, and iii) how resistant starch interventions yield variable effects on the gut microbiome.
Keywords: Resistant starch; clinical trials; microbiome; personalized medicine; personalized therapies; precision medicine.
Conflict of interest statement
A.S. has co-founded MedBiome, a clinical microbiomics company.
Figures
Figure 1.
The hierarchical structure of starch granules. The physicochemical properties (left-side) of glucose polymers influence the overall morphology and digestibility of the starch granule. The scale of each structural level is indicated on the right-side
Figure 2.
RS guild members show preferences for different RS in vivo. Primary degraders, secondary degraders, and cross-feeders discussed in-text that have been reported to significantly increase in relative abundance across 16 clinical trials where the microbiome was monitored. Lines indicate the frequency of reported associations. *Species-level differences among B. adolescentis and E. rectale/Roseburia could not be resolved in every study. Full data can be found in Supplemental Table 1.
Similar articles
- Starch digestibility: past, present, and future.
Bello-Perez LA, Flores-Silva PC, Agama-Acevedo E, Tovar J. Bello-Perez LA, et al. J Sci Food Agric. 2020 Nov;100(14):5009-5016. doi: 10.1002/jsfa.8955. Epub 2018 Mar 30. J Sci Food Agric. 2020. PMID: 29427318 Review. - Conserved and variable responses of the gut microbiome to resistant starch type 2.
Bendiks ZA, Knudsen KEB, Keenan MJ, Marco ML. Bendiks ZA, et al. Nutr Res. 2020 May;77:12-28. doi: 10.1016/j.nutres.2020.02.009. Epub 2020 Feb 22. Nutr Res. 2020. PMID: 32251948 Free PMC article. Review. - New definition of resistant starch types from the gut microbiota perspectives - a review.
Li C, Hu Y. Li C, et al. Crit Rev Food Sci Nutr. 2023;63(23):6412-6422. doi: 10.1080/10408398.2022.2031101. Epub 2022 Jan 25. Crit Rev Food Sci Nutr. 2023. PMID: 35075962 Review. - Resistant starch: impact on the gut microbiome and health.
DeMartino P, Cockburn DW. DeMartino P, et al. Curr Opin Biotechnol. 2020 Feb;61:66-71. doi: 10.1016/j.copbio.2019.10.008. Epub 2019 Nov 22. Curr Opin Biotechnol. 2020. PMID: 31765963 Review. - Resistant starches and gut microbiota.
Wen JJ, Li MZ, Hu JL, Tan HZ, Nie SP. Wen JJ, et al. Food Chem. 2022 Sep 1;387:132895. doi: 10.1016/j.foodchem.2022.132895. Epub 2022 Apr 5. Food Chem. 2022. PMID: 35413551
Cited by
- Dietary resistant starch supplementation increases gut luminal deoxycholic acid abundance in mice.
Reuter MA, Tucker M, Marfori Z, Shishani R, Bustamante JM, Moreno R, Goodson ML, Ehrlich A, Taha AY, Lein PJ, Joshi N, Brito I, Durbin-Johnson B, Nandakumar R, Cummings BP. Reuter MA, et al. Gut Microbes. 2024 Jan-Dec;16(1):2315632. doi: 10.1080/19490976.2024.2315632. Epub 2024 Feb 20. Gut Microbes. 2024. PMID: 38375831 Free PMC article. - Effects of Heat-Moisture-Treated High-Amylose Rice Flour on Body Weight, Lipid Metabolism, and Gut Microbiome Composition in Obese Rats.
Ma S, Takasugi S, Sugawara M, Saito K, Jia H, Kato H. Ma S, et al. Metabolites. 2023 Jul 19;13(7):858. doi: 10.3390/metabo13070858. Metabolites. 2023. PMID: 37512566 Free PMC article. - A narrative review from gut to lungs: non-small cell lung cancer and the gastrointestinal microbiome.
Shah H, Ng TL. Shah H, et al. Transl Lung Cancer Res. 2023 Apr 28;12(4):909-926. doi: 10.21037/tlcr-22-595. Transl Lung Cancer Res. 2023. PMID: 37197624 Free PMC article. Review. - Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence.
Ariaee A, Koentgen S, Wardill HR, Hold GL, Prestidge CA, Armstrong HK, Joyce P. Ariaee A, et al. eGastroenterology. 2024 Apr 3;2(2):e100055. doi: 10.1136/egastro-2023-100055. eCollection 2024 Apr. eGastroenterology. 2024. PMID: 39944472 Free PMC article. Review. - The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids.
Mazhar M, Zhu Y, Qin L. Mazhar M, et al. Foods. 2023 Feb 28;12(5):1023. doi: 10.3390/foods12051023. Foods. 2023. PMID: 36900540 Free PMC article. Review.
References
- Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–21. doi:10.1038/nrgastro.2017.75. - DOI - PubMed
- Alfa MJ, Strang D, Tappia PS, Graham M, Van Domselaar G, Forbes JD, Laminman V, Olson N, DeGagne P, Bray D, et al. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin Nutr. 2018;37(3):797–807. doi:10.1016/j.clnu.2017.03.025. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources