Assessment of Immune Response and Efficacy of Essential Oils Application on Controlling Necrotic Enteritis Induced by Clostridium perfringens in Broiler Chickens - PubMed (original) (raw)

Comparative Study

Assessment of Immune Response and Efficacy of Essential Oils Application on Controlling Necrotic Enteritis Induced by Clostridium perfringens in Broiler Chickens

Mohammad H Gharaibeh et al. Molecules. 2021.

Abstract

Necrotic enteritis (NE) caused by Clostridium perfringens is one of the most important enteric diseases in poultry. The antibacterial activity of two different essential oil (EO) blends against C. perfringens was investigated both in vitro and in vivo. Additionally, the immunological response to EO treatment was assessed. In the in vitro study, the antibacterial activity of EO formulas and commonly used antibiotics was evaluated against C. perfringens using disk diffusion assay, minimum inhibitory concentration (MIC) assay, and minimum bactericidal concentration (MBC) assay. In the in vivo study, NE experimental infection was performed on 440 Ross broiler chicks at 19 days of age for 4 continuous days. The chicks were treated with either EOs or amoxicillin at 22 days of age for 5 continuous days. One day after the end of treatment, the birds' performance was evaluated by calculating the feed conversion ratio. Serum samples from 120 birds were collected to measure the levels of IL-1β, IFN-γ, IL-8, IL-10, and IL-17. After that, all birds were slaughtered, and their small intestines were subjected to gross and histopathological evaluation. In addition, bacterial counts in the small intestines were evaluated. In the in vitro study, EOs showed higher antimicrobial activities in comparison with antibiotics against C. perfringens. In the in vivo study, birds treated with EOs showed a significant decrease in bacterial counts, a significant decrease in intestinal lesions, and a significant improvement in performance compared with untreated birds (p < 0.05). Moreover, treating birds with EOs directed the immune system toward an anti-inflammatory pathway. None of the treated birds died due to NE compared with the 10% mortality rate in untreated birds. In conclusion, EOs might be an effective and safe alternative to antibiotics in the treatment of chicken NE.

Keywords: Clostridium perfringens; anti-inflammatory pathway; broiler chickens; cytokines; essential oils; necrotic enteritis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1

Figure 1

Feed conversion ratio in birds in response to NE caused by C. perfringens infection. The feed conversion ratio was calculated by dividing the average feed intake over the average weight gain per replicate per group. The values are means ± S.E. Different letters represent statistically significant differences with a _p_-value less than 0.05.

Figure 2

Figure 2

C. perfringens count was recovered from the intestinal contents of the birds with and without NE. All the control groups reflect the basal bacterial counts in the presence of intestinal stressors (nutritional and coccidial overdose vaccination) in the untreated nonexperimentally infected birds. The values are means ± S.E. Different letters represent statistically significant differences with a _p_-value less than 0.05.

Figure 3

Figure 3

The concentrations of the IL-17 (A), IL-10 (B), IFN-γ (C), IL-1β (D), and IL-8 (E) cytokines in comparison with the challenge experimental NE study obtained through ELISA. At 19 days of age, the chickens were infected for 4 continuous days through oral administration of broth cultures of C. perfringens. On the second day of C. perfringens infection, the chicks were orally administrated the recommended dose of the coccidial vaccine 10 times. The treatment was administrated in drinking water on day 22 and continued for 5 days. Sera were collected at day 27 postchallenge. The values are means ± S.E. Different letters represent statistically significant differences with a _p_-value less than 0.05.

Figure 4

Figure 4

Different lesions of NE in the small intestine. (A) Thickened mucus, variable degrees of serosal blood vessel congestion. (B) Hemorrhage of the intestinal wall, fibrin deposition, and necrotic debris of the mucus membrane. (C) No gross lesions are present.

Figure 5

Figure 5

Overall NE lesion score for the entire length of the small intestine. The score sum for all the separate intestinal portions (duodenum, jejunum, and ileum) ranges from 0 to 3. All the control groups reflect the basal intestinal scores in the presence of intestinal stressors (nutritional and coccidial overdose vaccination). The values are means ± S.E. Different letters represent statistically significant differences with a _p_-value less than 0.05.

Similar articles

Cited by

References

    1. Wade B., Keyburn A. The true cost of necrotic enteritis. World Poult. 2015;31:16–17.
    1. Moore R.J. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016;45:275–281. doi: 10.1080/03079457.2016.1150587. - DOI - PubMed
    1. Seal B.S. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult. Sci. 2013;92:526–533. doi: 10.3382/ps.2012-02708. - DOI - PMC - PubMed
    1. McReynolds J.L., Byrd J.A., Anderson R.C., Moore R.W., Edrington T.S., Genovese K.J., Poole T.L., Kubena L.F., Nisbet D.J. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poult. Sci. 2004;83:1948–1952. doi: 10.1093/ps/83.12.1948. - DOI - PubMed
    1. Grass J.E., Gould L.H., Mahon B.E. Epidemiology of Foodborne Disease Outbreaks Caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog. Dis. 2013;10:131–136. doi: 10.1089/fpd.2012.1316. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources