Lipogenesis from ketone bodies in the perfused rat liver: effects of acetate and ethanol - PubMed (original) (raw)
. 1987 Nov;65(11):989-96.
doi: 10.1139/o87-129.
Affiliations
- PMID: 3442632
- DOI: 10.1139/o87-129
Lipogenesis from ketone bodies in the perfused rat liver: effects of acetate and ethanol
G Endemann et al. Biochem Cell Biol. 1987 Nov.
Abstract
The interactions between acetate or ethanol metabolism, lipogenesis, and ketone body utilization have been studied in isolated livers from fed rats perfused with 15 mM glucose and 10 mM acetate or ethanol. The contribution of acetate to ketogenesis is constant; on the other hand, the contribution of ethanol to ketogenesis increases with time, presumably because of the accumulation of acetate in the perfusate. Ketogenesis is decreased in the presence of ethanol (but not acetate), while ketone body utilization is not affected by ethanol or acetate. Acetate contributes one third and ethanol contributes one half of the carbon incorporated into fatty acids and 3-beta-hydroxysterols. Only a small fraction (less than 5%) of the incorporation of acetate or ethanol into fatty acids and sterols occurs via transient incorporation into ketone bodies.
Similar articles
- Ketone body utilization for lipogenesis in the perfused liver of the obese Zucker rat.
Azain MJ, Ontko JA. Azain MJ, et al. Horm Metab Res. 1990 Nov;22(11):561-5. doi: 10.1055/s-2007-1004973. Horm Metab Res. 1990. PMID: 2272602 - Lipogenesis from ketone bodies in perfused livers from streptozocin-induced diabetic rats.
Freed LE, Endemann G, Tomera JF, Gavino VC, Brunengraber H. Freed LE, et al. Diabetes. 1988 Jan;37(1):50-5. doi: 10.2337/diab.37.1.50. Diabetes. 1988. PMID: 3335277 - Dependence on blood acetate concentration of the metabolic effects of ethanol in perfused rat liver.
Topping DL, Snoswell AM, Storer GB, Fishlock RC, Trimble RP. Topping DL, et al. Biochim Biophys Acta. 1984 Jul 16;800(1):103-5. doi: 10.1016/0304-4165(84)90099-0. Biochim Biophys Acta. 1984. PMID: 6743681 - Ketone body metabolism during development.
Williamson DH. Williamson DH. Fed Proc. 1985 Apr;44(7):2342-6. Fed Proc. 1985. PMID: 3884389 Review. - Mechanisms of catecholamine effects on ketogenesis.
Bahnsen M, Burrin JM, Johnston DG, Pernet A, Walker M, Alberti KG. Bahnsen M, et al. Am J Physiol. 1984 Aug;247(2 Pt 1):E173-80. doi: 10.1152/ajpendo.1984.247.2.E173. Am J Physiol. 1984. PMID: 6147093 Review.
Cited by
- Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet.
Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K, Veech RL. Srivastava S, et al. FASEB J. 2012 Jun;26(6):2351-62. doi: 10.1096/fj.11-200410. Epub 2012 Feb 23. FASEB J. 2012. PMID: 22362892 Free PMC article. - Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.
Schönfeld P, Wojtczak L. Schönfeld P, et al. J Lipid Res. 2016 Jun;57(6):943-54. doi: 10.1194/jlr.R067629. Epub 2016 Apr 14. J Lipid Res. 2016. PMID: 27080715 Free PMC article. Review. - Interrelations between C4 ketogenesis, C5 ketogenesis, and anaplerosis in the perfused rat liver.
Deng S, Zhang GF, Kasumov T, Roe CR, Brunengraber H. Deng S, et al. J Biol Chem. 2009 Oct 9;284(41):27799-27807. doi: 10.1074/jbc.M109.048744. Epub 2009 Aug 8. J Biol Chem. 2009. PMID: 19666922 Free PMC article. - Hippocampal metabolism of amino acids by L-amino acid oxidase is involved in fear learning and memory.
Usuda K, Kawase T, Shigeno Y, Fukuzawa S, Fujii K, Zhang H, Tsukahara T, Tomonaga S, Watanabe G, Jin W, Nagaoka K. Usuda K, et al. Sci Rep. 2018 Jul 23;8(1):11073. doi: 10.1038/s41598-018-28885-x. Sci Rep. 2018. PMID: 30038322 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources