A rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase - PubMed (original) (raw)
Comparative Study
A rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase
S K Nordeen et al. DNA. 1987 Apr.
Abstract
We present a rapid, sensitive enzymatic assay for chloramphenicol acetyltransferase (CAT) that does not require chromatography, HPLC, or autoradiography. The assay is based on the use of an inexpensive substrate, tritiated acetate, instead of [14C]chloramphenicol. The method is adapted from one originally used by de Crombrugghe et al. (1973) and by Shaw (1975), but with simplifications appropriate for routine use. In our hands, the method is as sensitive as the customary thin-layer chromatography assay and is far more efficient for the performance of many assays, both in terms of labor and expense.
Similar articles
- Detection of chloramphenicol acetyl transferase activity in transfected cells: a rapid and sensitive HPLC-based method.
Young SL, Jackson AE, Puett D, Melner MH. Young SL, et al. DNA. 1985 Dec;4(6):469-75. doi: 10.1089/dna.1985.4.469. DNA. 1985. PMID: 3867497 - A method to detect transfected chloramphenicol acetyltransferase gene expression in intact animals.
Narayanan R, Jastreboff MM, Chiu CF, Ito E, Bertino JR. Narayanan R, et al. Exp Cell Res. 1988 Jan;174(1):297-301. doi: 10.1016/0014-4827(88)90164-4. Exp Cell Res. 1988. PMID: 2826196 - Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria.
Gaffney DF, Cundliffe E, Foster TJ. Gaffney DF, et al. J Gen Microbiol. 1981 Jul;125(1):113-21. doi: 10.1099/00221287-125-1-113. J Gen Microbiol. 1981. PMID: 7038031 - An immunological assay for chloramphenicol acetyltransferase.
Burns DK, Crowl RM. Burns DK, et al. Anal Biochem. 1987 May 1;162(2):399-404. doi: 10.1016/0003-2697(87)90410-6. Anal Biochem. 1987. PMID: 3300416 - A method for assay of chloramphenicol acetyltransferase from crude cell extract.
Datta K, Majumdar MK. Datta K, et al. Microbiologica. 1985 Jan;8(1):73-7. Microbiologica. 1985. PMID: 3856095
Cited by
- A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene.
Lucas PC, O'Brien RM, Mitchell JA, Davis CM, Imai E, Forman BM, Samuels HH, Granner DK. Lucas PC, et al. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2184-8. doi: 10.1073/pnas.88.6.2184. Proc Natl Acad Sci U S A. 1991. PMID: 1848696 Free PMC article. - mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor.
Huang S, Brandt SJ. Huang S, et al. Mol Cell Biol. 2000 Mar;20(6):2248-59. doi: 10.1128/MCB.20.6.2248-2259.2000. Mol Cell Biol. 2000. PMID: 10688671 Free PMC article. - Somatotropin-dependent decrease in fatty acid synthase mRNA abundance in 3T3-F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability.
Yin D, Clarke SD, Peters JL, Etherton TD. Yin D, et al. Biochem J. 1998 May 1;331 ( Pt 3)(Pt 3):815-20. doi: 10.1042/bj3310815. Biochem J. 1998. PMID: 9560309 Free PMC article. - Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene.
Imai E, Stromstedt PE, Quinn PG, Carlstedt-Duke J, Gustafsson JA, Granner DK. Imai E, et al. Mol Cell Biol. 1990 Sep;10(9):4712-9. doi: 10.1128/mcb.10.9.4712-4719.1990. Mol Cell Biol. 1990. PMID: 2388623 Free PMC article. - Involvement of retinoblastoma protein and HBP1 in histone H1(0) gene expression.
Lemercier C, Duncliffe K, Boibessot I, Zhang H, Verdel A, Angelov D, Khochbin S. Lemercier C, et al. Mol Cell Biol. 2000 Sep;20(18):6627-37. doi: 10.1128/MCB.20.18.6627-6637.2000. Mol Cell Biol. 2000. PMID: 10958660 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Miscellaneous