The Preventive Effect of Lactobacillus plantarum ZS62 on DSS-Induced IBD by Regulating Oxidative Stress and the Immune Response - PubMed (original) (raw)
The Preventive Effect of Lactobacillus plantarum ZS62 on DSS-Induced IBD by Regulating Oxidative Stress and the Immune Response
Yanni Pan et al. Oxid Med Cell Longev. 2021.
Abstract
In this study, we used DSS to establish an IBD mouse model to study the preventive effect of Lactobacillus plantarum (L. plantarum) ZS62 on IBD in the context of oxidative stress and the immune response. We assessed the mitigating effect of this strain on IBD mice by examining the length of and histopathological changes in the colon, determining the serum antioxidant index and the levels of inflammatory cytokines, as well as the mRNA and protein expression levels of relevant genes. The study results showed that L. plantarum ZS62 could inhibit colonic atrophy in IBD mice, reduce the degree of colonic damage, downregulate the serum levels of MDA, MPO, IL-1_β_, IL-6, IL-12, TNF-α, and IFN-γ and the relative mRNA and protein expression of IL-1_β_, IL-12, TNF-α, COX-2, iNOS, and NF-_κ_B p65 in mouse colon tissues, and upregulate the serum levels of CAT, T-SOD, and IL-10 and the relative mRNA and protein expression of Cu/Zn SOD, Mn SOD, GSH-Px, CAT, IL-10, and I_κ_B-α in colon tissues. In summary, L. plantarum ZS62 exhibited a good preventive effect on DSS-induced IBD by regulating oxidative stress and the immune response.
Copyright © 2021 Yanni Pan et al.
Conflict of interest statement
The authors declare no conflict of interest in this article.
Figures
Figure 1
Morphological characteristics of experimental lactic acid bacterium Lactobacillus plantarum ZS62.
Figure 2
Colon length (cm) of experimental mice. (a) Average length of experimental mouse colon. (b) Photo of mouse colon length. Normal: mice fed a standard chow diet plus drinking water; DSS: mice fed the standard chow diet plus drinking water with 5% dextran sulfate sodium; SSZ: sulfasalazine (500 mg/kg of BW) plus 5% DSS; ZS62: Lactobacillus plantarum ZS62 (1.0 × 109 CFU/mL) plus 5% DSS; LB: Lactobacillus bulgaricus (1.0 × 109 CFU/mL) plus 5% DSS. a–cMean values with different letters in the same bars are significantly different (p < 0.05) according to Duncan's new multiple range test (MRT).
Figure 3
Histopathological observation of colon tissues. Magnification 100x. Normal: mice fed a standard chow diet plus drinking water; DSS: mice fed the standard chow diet plus drinking water with 5% dextran sulfate sodium; SSZ: sulfasalazine (500 mg/kg of BW) plus 5% DSS; ZS62: Lactobacillus plantarum ZS62 (1.0 × 109 CFU/mL) plus 5% DSS; LB: Lactobacillus bulgaricus (1.0 × 109 CFU/mL) plus 5% DSS.
Figure 4
Concentrations of cytokines IL-6, IL-10, IL-12, TNF-α, and IFN-γ. (a–e) Mean values with different letters in the same column differ significantly (p < 0.05) by Duncan's multiple range test. Values presented are the means ± standard deviation (N = 10/group). Normal: mice fed a standard chow diet plus drinking water; DSS: mice fed the standard chow diet plus drinking water with 5% dextran sulfate sodium; SSZ: sulfasalazine (500 mg/kg of BW) plus 5% DSS; ZS62: Lactobacillus plantarum ZS62 (1.0 × 109 CFU/mL) plus 5% DSS; LB: Lactobacillus bulgaricus (1.0 × 109 CFU/mL) plus 5% DSS.
Figure 5
The mRNA and protein expression levels of Cu/Zn SOD, Mn SOD, GSH-Px, and CAT in mouse colon tissue. a–eMean values with different letters in the same column differ significantly (p < 0.05) by Duncan's multiple range test. Values presented are the means ± standard deviation (N = 10/group). Normal: mice fed a standard chow diet plus drinking water; DSS: mice fed the standard chow diet plus drinking water with 5% dextran sulfate sodium; SSZ: sulfasalazine (500 mg/kg of BW) plus 5% DSS; ZS62: Lactobacillus plantarum ZS62 (1.0 × 109 CFU/mL) plus 5% DSS; LB: Lactobacillus bulgaricus (1.0 × 109 CFU/mL) plus 5% DSS.
Figure 6
The mRNA and protein expression levels of IL-1_β_, IL-12, TNF-α, and IL-10 in mouse colon tissue. a–eMean values with different letters in the same column differ significantly (p < 0.05) by Duncan's multiple range test. Values presented are the means ± standard deviation (N = 10/group). Normal: mice fed a standard chow diet plus drinking water; DSS: mice fed the standard chow diet plus drinking water with 5% dextran sulfate sodium; SSZ: sulfasalazine (500 mg/kg of BW) plus 5% DSS; ZS62: Lactobacillus plantarum ZS62 (1.0 × 109 CFU/mL) plus 5% DSS; LB: Lactobacillus bulgaricus (1.0 × 109 CFU/mL) plus 5% DSS.
Figure 7
The mRNA and protein expression levels of COX-2, iNOS, NF-_κ_B p65, and I_κ_B-α in mouse colon tissue. a–eMean values with different letters in the same column differ significantly (p < 0.05) by Duncan's multiple range test. Values presented are the means ± standard deviation (N = 10/group). Normal: mice fed a standard chow diet plus drinking water; DSS: mice fed the standard chow diet plus drinking water with 5% dextran sulfate sodium; SSZ: sulfasalazine (500 mg/kg of BW) plus 5% DSS; ZS62: Lactobacillus plantarum ZS62 (1.0 × 109 CFU/mL) plus 5% DSS; LB: Lactobacillus bulgaricus (1.0 × 109 CFU/mL) plus 5% DSS.
Similar articles
- Protective effect of Lactobacillus fermentum CQPC04 on dextran sulfate sodium-induced colitis in mice is associated with modulation of the nuclear factor-κB signaling pathway.
Zhou X, Liu H, Zhang J, Mu J, Zalan Z, Hegyi F, Takács K, Zhao X, Du M. Zhou X, et al. J Dairy Sci. 2019 Nov;102(11):9570-9585. doi: 10.3168/jds.2019-16840. Epub 2019 Aug 30. J Dairy Sci. 2019. PMID: 31477303 - Lactobacillus plantarum CQPC06 Activity Prevents Dextran Sulfate Sodium-Induced Colitis by Regulating the IL-8 Pathway.
Zhang J, Yi R, Qian Y, Sun P, Zhao X, Yang Z. Zhang J, et al. J Food Sci. 2018 Oct;83(10):2653-2661. doi: 10.1111/1750-3841.14346. Epub 2018 Sep 17. J Food Sci. 2018. PMID: 30221762 - Protective effect of Lactobacillus plantarum YS3 on dextran sulfate sodium-induced colitis in C57BL/6J mice.
Hu T, Fan Y, Long X, Pan Y, Mu J, Tan F, Zhao X. Hu T, et al. J Food Biochem. 2021 Feb;45(2):e13632. doi: 10.1111/jfbc.13632. Epub 2021 Feb 1. J Food Biochem. 2021. PMID: 33527475 - The synergic impact of lignin and Lactobacillus plantarum on DSS-induced colitis model via regulating CD44 and miR 199a alliance.
Kaliyamoorthy V, Jacop JP, Thirugnanasambantham K, Ibrahim HIM, Kandhasamy S. Kaliyamoorthy V, et al. World J Microbiol Biotechnol. 2022 Oct 12;38(12):233. doi: 10.1007/s11274-022-03424-z. World J Microbiol Biotechnol. 2022. PMID: 36222901
Cited by
- Probiotics for inflammatory bowel disease: Is there sufficient evidence?
Ma Y, Yang D, Huang J, Liu K, Liu H, Wu H, Bao C. Ma Y, et al. Open Life Sci. 2024 Apr 5;19(1):20220821. doi: 10.1515/biol-2022-0821. eCollection 2024. Open Life Sci. 2024. PMID: 38585636 Free PMC article. Review. - In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome.
Jang YJ, Min B, Lim JH, Kim BY. Jang YJ, et al. J Microbiol Biotechnol. 2023 Sep 28;33(9):1149-1161. doi: 10.4014/jmb.2303.03011. Epub 2023 Jun 19. J Microbiol Biotechnol. 2023. PMID: 37386724 Free PMC article. - Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells.
Lu J, An Y, Wang X, Zhang C, Guo S, Ma Y, Qiu Y, Wang S. Lu J, et al. J Vet Med Sci. 2024 Sep 20;86(9):1016-1026. doi: 10.1292/jvms.24-0148. Epub 2024 Jul 29. J Vet Med Sci. 2024. PMID: 39069486 Free PMC article. - Ethanol Extract of Limonium bicolor Improves Dextran Sulfate Sodium-Induced Ulcerative Colitis by Alleviating Inflammation and Restoring Gut Microbiota Dysbiosis in Mice.
Jia W, Yu S, Liu X, Le Q, He X, Yu L, He J, Yang L, Gao H. Jia W, et al. Mar Drugs. 2024 Apr 15;22(4):175. doi: 10.3390/md22040175. Mar Drugs. 2024. PMID: 38667792 Free PMC article. - Lactiplantibacillus plantarum NMGL2 exopolysaccharide ameliorates DSS-induced IBD in mice mainly by regulation of intestinal tight junction and NF-κB p65 protein expression.
Zhou Z, Zhang M, Yao M, Naseeb J, Sarwar A, Yang Z, Aziz T, Alhomrani M, Alsanie WF, Alamri AS. Zhou Z, et al. Front Microbiol. 2024 Oct 28;15:1491727. doi: 10.3389/fmicb.2024.1491727. eCollection 2024. Front Microbiol. 2024. PMID: 39529667 Free PMC article.
References
- Raj B., Chandrasekhar K., Kumar A. N., Kim S. H. Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Systems Microbiology and Biomanufacturing . 2021;42 doi: 10.1007/s43393-021-00044-w. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous