Ultrastructural changes during the life cycle of human odontoblasts - PubMed (original) (raw)
Ultrastructural changes during the life cycle of human odontoblasts
E Couve. Arch Oral Biol. 1986.
Abstract
In developing premolars there are four successive stages of odontoblasts related to their location within the tooth, namely pre-odontoblasts, secretory, transitional and aged odontoblasts. Pre-odontoblasts are at the growing tip of the root; they are immature and slightly polarized. They become fully differentiated to give rise to the most active, secretory stage when primary dentine is produced. After completion of primary dentine formation in the coronal region, the aged odontoblasts have a reduced number of organelles which are relocated within the infranuclear region. This final stage is regressive and results from an autophagic process that is prominent in the transitional stage.
Similar articles
- Morphometric analysis of the nucleolus during the life cycle of human odontoblasts.
Couve E. Couve E. Anat Rec. 1985 Oct;213(2):215-24. doi: 10.1002/ar.1092130214. Anat Rec. 1985. PMID: 4073573 - Transmission electron microscopy of the human odontoblast process in peripheral root dentine.
Frank RM, Steuer P. Frank RM, et al. Arch Oral Biol. 1988;33(2):91-8. doi: 10.1016/0003-9969(88)90051-9. Arch Oral Biol. 1988. PMID: 3166614 - An ultrastructural study of cytodifferentiation in the developing human root-tip.
Rademakers LH, Slootweg PJ, van Blokland WT. Rademakers LH, et al. Arch Oral Biol. 1985;30(9):655-60. doi: 10.1016/0003-9969(85)90151-7. Arch Oral Biol. 1985. PMID: 3865641 - Odontoblasts: the cells forming and maintaining dentine.
Arana-Chavez VE, Massa LF. Arana-Chavez VE, et al. Int J Biochem Cell Biol. 2004 Aug;36(8):1367-73. doi: 10.1016/j.biocel.2004.01.006. Int J Biochem Cell Biol. 2004. PMID: 15147714 Review. - Odontoblast primary cilia: facts and hypotheses.
Magloire H, Couble ML, Romeas A, Bleicher F. Magloire H, et al. Cell Biol Int. 2004;28(2):93-9. doi: 10.1016/j.cellbi.2003.11.006. Cell Biol Int. 2004. PMID: 14984754 Review.
Cited by
- Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors.
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Quigley RM, et al. Bioact Mater. 2024 Jun 12;40:182-211. doi: 10.1016/j.bioactmat.2024.06.012. eCollection 2024 Oct. Bioact Mater. 2024. PMID: 38966600 Free PMC article. Review. - Cpne7 deficiency induces cellular senescence and premature aging of dental pulp.
Lee YS, Park YH, Hwang G, Seo H, Ki SH, Bai S, Son C, Roh SM, Park SJ, Lee DS, Lee JH, Seo YM, Shon WJ, Jeon D, Jang M, Kim SG, Seo BM, Lee G, Park JC. Lee YS, et al. Aging Cell. 2024 Mar;23(3):e14061. doi: 10.1111/acel.14061. Epub 2023 Dec 17. Aging Cell. 2024. PMID: 38105557 Free PMC article. - The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review.
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. Nijakowski K, et al. Metabolites. 2023 Apr 5;13(4):520. doi: 10.3390/metabo13040520. Metabolites. 2023. PMID: 37110177 Free PMC article. Review. - The Equine Dental Pulp: Histomorphometric Analysis of the Equine Dental Pulp in Incisors and Cheek Teeth.
Roßgardt J, Heilen LB, Büttner K, Dern-Wieloch J, Vogelsberg J, Staszyk C. Roßgardt J, et al. Vet Sci. 2022 May 30;9(6):261. doi: 10.3390/vetsci9060261. Vet Sci. 2022. PMID: 35737313 Free PMC article. - IGFs in Dentin Formation and Regeneration: Progress and Remaining Challenges.
He P, Zheng L, Zhou X. He P, et al. Stem Cells Int. 2022 Apr 6;2022:3737346. doi: 10.1155/2022/3737346. eCollection 2022. Stem Cells Int. 2022. PMID: 35432548 Free PMC article. Review.