Angiotensin-converting enzyme inhibitors prevent liver-related events in nonalcoholic fatty liver disease - PubMed (original) (raw)

. 2022 Aug;76(2):469-482.

doi: 10.1002/hep.32294. Epub 2022 Jan 24.

Affiliations

Xinrong Zhang et al. Hepatology. 2022 Aug.

Abstract

Background and aims: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) can inhibit liver fibrogenesis in animal models. We aimed to evaluate the impact of ACEI/ARB use on the risk of liver cancer and cirrhosis complications in patients with NAFLD.

Approach and results: We conducted a retrospective, territory-wide cohort study of adult patients with NAFLD diagnosed between January 2000 and December 2014 to allow for at least 5 years of follow-up. ACEI or ARB users were defined as patients who had received ACEI or ARB treatment for at least 6 months. The primary endpoint was liver-related events (LREs), defined as a composite endpoint of liver cancer and cirrhosis complications. We analyzed data from 12,327 NAFLD patients (mean age, 54.2 ± 14.7 years; 6163 men [50.0%]); 6805 received ACEIs, and 2877 received ARBs. After propensity score weighting, ACEI treatment was associated with a lower risk of LREs (weighted subdistribution hazard ratio [SHR], 0.48; 95% CI, 0.35-0.66; p < 0.001), liver cancer (weighted SHR, 0.46; 95% CI, 0.28-0.75; p = 0.002), and cirrhosis complications (weighted SHR, 0.42; 95% CI, 0.27-0.66; p < 0.001), but ARB was not. In subgroup analysis, ACEI treatment was associated with greater reduction in LREs in patients with chronic kidney diseases (CKDs) than those without (CKD-weighted SHR, 0.74; 95% CI, 0.52-0.96; p = 0.036; non-CKD-weighted SHR, 0.15; 95% CI, 0.07-0.33; p < 0.001).

Conclusions: ACEI, rather than ARB, treatment is associated with a lower risk of LREs in NAFLD patients, especially among those with CKD.

© 2021 American Association for the Study of Liver Diseases.

PubMed Disclaimer

Comment in

References

REFERENCES

    1. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11-20.
    1. Wong VS, Chu WW, Wong GH, Chan RM, Chim AL, Ong A, et al. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance spectroscopy and transient elastography. Gut. 2012;61:409-15.
    1. Zhang X, Goh GB, Chan WK, Wong GH, Fan JG, Seto WK, et al. Unhealthy lifestyle habits and physical inactivity among Asian patients with non-alcoholic fatty liver disease. Liver Int. 2020;40:2719-31.
    1. Paschos P, Tziomalos K. Nonalcoholic fatty liver disease and the renin-angiotensin system: Implications for treatment. World J Hepatol. 2012;4:327-31.
    1. Bataller R, Sancho-bru P, Ginès P, Lora JM, Al-garawi A, Solé M, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117-25.

MeSH terms

Substances

LinkOut - more resources