Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP - PubMed (original) (raw)
doi: 10.1038/s41467-021-27891-4.
Florian Mekhaldi 2 3, Florian Adolphi 4, Marcus Christl 5, Christof Vockenhuber 5, Philip Gautschi 5, Jürg Beer 6, Nicolas Brehm 5, Tobias Erhardt 4 7, Hans-Arno Synal 5, Lukas Wacker 5, Frank Wilhelms 4 8, Raimund Muscheler 2
Affiliations
- PMID: 35017519
- PMCID: PMC8752676
- DOI: 10.1038/s41467-021-27891-4
Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP
Chiara I Paleari et al. Nat Commun. 2022.
Abstract
During solar storms, the Sun expels large amounts of energetic particles (SEP) that can react with the Earth's atmospheric constituents and produce cosmogenic radionuclides such as 14C, 10Be and 36Cl. Here we present 10Be and 36Cl data measured in ice cores from Greenland and Antarctica. The data consistently show one of the largest 10Be and 36Cl production peaks detected so far, most likely produced by an extreme SEP event that hit Earth 9125 years BP (before present, i.e., before 1950 CE), i.e., 7176 BCE. Using the 36Cl/10Be ratio, we demonstrate that this event was characterized by a very hard energy spectrum and was possibly up to two orders of magnitude larger than any SEP event during the instrumental period. Furthermore, we provide 10Be-based evidence that, contrary to expectations, the SEP event occurred near a solar minimum.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Fig. 1. Cosmogenic radionuclide records for the 9125 years BP event.
NGRIP and EDML data are shown on the left, GRIP and EGRIP 10Be data and 14C production rate are shown on the right. The baseline (average radionuclide concentration excluding the peak values) is shown as a dashed line. The error bar of each data point includes the measurement uncertainty. The enhancement factors (ratio between integrated enhancements in the radionuclide production and the baseline value) are noted next to the peak for each record.
Fig. 2. Event-integrated fluence spectra (assuming an average Φ = 650 MV).
The dashed curves represent the original spectra of the modern events that fit the 36Cl/10Be ratio of the 9125 years BP event. The scaled spectra are shown as continuous lines. The black line shows the average fluence spectrum. The fluences above 30, 200, and 430 MeV (F30, F200 and F430) of the average spectrum are reported. The uncertainties of the fluence estimates include the uncertainty of the 10Be enhancement factor and the standard deviation of the scaled spectra.
Fig. 3. Relationship between the solar 11-year cycle and the occurrence of the solar energetic particle events of 9125 years BP and 774/5 CE.
a The normalized 10Be records from NGRIP and EGRIP from 9150 to 9105 years BP (see legend) compared to the normalized 10Be annual production rate modeled from neutron monitor data for the period 1963–2008 (black line), showing the best correlation coefficients (for details see main text, EGRIP: r = 0.45, p < 0.01; NGRIP: r = 0.51, p < 0.01). The top panel shows the group sunspot number corresponding to the period of the neutron monitor-based production rate. b The same comparison for the average 10Be data from ice cores from Greenland (NEEM S1, NGRIP, and Tunu) and Antarctica (WAIS) from 770 to 800 CE (blue line) to the period 1961–1991 (neutron-monitor based production rate, black line), showing the best correlation coefficient (for details see main text, r = 0.69, p < 0.01). NEEM, NGRIP, and Tunu from Greenland and WAIS from Antarctica were normalized to their baseline (average 10Be concentration excluding the peak). The red line indicates the estimated onset of the event. The timescales are independently matched,, i.e., not matched to get a fit for the 10Be peak.
Similar articles
- Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE.
Brehm N, Christl M, Knowles TDJ, Casanova E, Evershed RP, Adolphi F, Muscheler R, Synal HA, Mekhaldi F, Paleari CI, Leuschner HH, Bayliss A, Nicolussi K, Pichler T, Schlüchter C, Pearson CL, Salzer MW, Fonti P, Nievergelt D, Hantemirov R, Brown DM, Usoskin I, Wacker L. Brehm N, et al. Nat Commun. 2022 Mar 7;13(1):1196. doi: 10.1038/s41467-022-28804-9. Nat Commun. 2022. PMID: 35256613 Free PMC article. - Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (∼660 BC).
O'Hare P, Mekhaldi F, Adolphi F, Raisbeck G, Aldahan A, Anderberg E, Beer J, Christl M, Fahrni S, Synal HA, Park J, Possnert G, Southon J, Bard E; ASTER Team; Muscheler R. O'Hare P, et al. Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5961-5966. doi: 10.1073/pnas.1815725116. Epub 2019 Mar 11. Proc Natl Acad Sci U S A. 2019. PMID: 30858311 Free PMC article. - Atmospheric impacts of the strongest known solar particle storm of 775 AD.
Sukhodolov T, Usoskin I, Rozanov E, Asvestari E, Ball WT, Curran MA, Fischer H, Kovaltsov G, Miyake F, Peter T, Plummer C, Schmutz W, Severi M, Traversi R. Sukhodolov T, et al. Sci Rep. 2017 Mar 28;7:45257. doi: 10.1038/srep45257. Sci Rep. 2017. PMID: 28349934 Free PMC article. - Earth-affecting solar transients: a review of progresses in solar cycle 24.
Zhang J, Temmer M, Gopalswamy N, Malandraki O, Nitta NV, Patsourakos S, Shen F, Vršnak B, Wang Y, Webb D, Desai MI, Dissauer K, Dresing N, Dumbović M, Feng X, Heinemann SG, Laurenza M, Lugaz N, Zhuang B. Zhang J, et al. Prog Earth Planet Sci. 2021;8(1):56. doi: 10.1186/s40645-021-00426-7. Epub 2021 Oct 4. Prog Earth Planet Sci. 2021. PMID: 34722120 Free PMC article. Review. - Large gradual solar energetic particle events.
Desai M, Giacalone J. Desai M, et al. Living Rev Sol Phys. 2016;13(1):3. doi: 10.1007/s41116-016-0002-5. Epub 2016 Sep 7. Living Rev Sol Phys. 2016. PMID: 32355890 Free PMC article. Review.
Cited by
- Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE.
Brehm N, Christl M, Knowles TDJ, Casanova E, Evershed RP, Adolphi F, Muscheler R, Synal HA, Mekhaldi F, Paleari CI, Leuschner HH, Bayliss A, Nicolussi K, Pichler T, Schlüchter C, Pearson CL, Salzer MW, Fonti P, Nievergelt D, Hantemirov R, Brown DM, Usoskin I, Wacker L. Brehm N, et al. Nat Commun. 2022 Mar 7;13(1):1196. doi: 10.1038/s41467-022-28804-9. Nat Commun. 2022. PMID: 35256613 Free PMC article. - The timing of the ca-660 BCE Miyake solar-proton event constrained to between 664 and 663 BCE.
Panyushkina IP, Jull AJT, Molnár M, Varga T, Kontul' I, Hantemirov R, Kukarskih V, Sljusarenko I, Myglan V, Livina V. Panyushkina IP, et al. Commun Earth Environ. 2024;5(1):454. doi: 10.1038/s43247-024-01618-x. Epub 2024 Aug 23. Commun Earth Environ. 2024. PMID: 39185327 Free PMC article. - Extreme solar storms and the quest for exact dating with radiocarbon.
Heaton TJ, Bard E, Bayliss A, Blaauw M, Bronk Ramsey C, Reimer PJ, Turney CSM, Usoskin I. Heaton TJ, et al. Nature. 2024 Sep;633(8029):306-317. doi: 10.1038/s41586-024-07679-4. Epub 2024 Sep 11. Nature. 2024. PMID: 39261612 Review. - Sulfur-isotope anomalies recorded in Antarctic ice cores as a potential proxy for tracing past ozone layer depletion events.
Dasari S, Paris G, Charreau J, Savarino J. Dasari S, et al. PNAS Nexus. 2022 Aug 30;1(4):pgac170. doi: 10.1093/pnasnexus/pgac170. eCollection 2022 Sep. PNAS Nexus. 2022. PMID: 36714879 Free PMC article.
References
- Eastwood JP, et al. Quantifying the economic value of space weather forecasting for power grids: An exploratory study. Sp. Weather. 2018;16:2052–2067.
- Tranquille C. Solar proton events and their effect on space systems. Radiat. Phys. Chem. 1994;43:35–45.
- Crutzen PJ, Isaksen ISA, Reid GC. Solar proton events: Stratospheric sources of nitric oxide. Sci. 1975;189:457–459. - PubMed
- Jackman CH, et al. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmos. Chem. Phys. 2011;11:6153–6166.
- Päivärinta SM, et al. Observed effects of solar proton events and sudden stratospheric warmings on odd nitrogen and ozone in the polar middle atmosphere. J. Geophys. Res. Atmos. 2013;118:6837–6848.
Grants and funding
- 824096/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- DNR2018-05469/Vetenskapsrådet (Swedish Research Council)
- DNR2013-8421/Vetenskapsrådet (Swedish Research Council)
LinkOut - more resources
Full Text Sources