Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast - PubMed (original) (raw)
Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast
I A Hope et al. Cell. 1986.
Abstract
Yeast GCN4 protein binds specifically to the promoters of amino acid biosynthetic genes and coordinately induces their transcription. Serially deleted GCN4 and hybrid LexA-GCN4 proteins were assayed for specific DNA binding activity in vitro, and for stimulation of transcription in vivo. The specific DNA binding activity resides in the 60 C-terminal amino acids, a basic region of GCN4. However, certain deletions containing the entire DNA binding region are unable to activate transcription and instead act as repressors in vivo. The activation function appears to critically involve just 19 amino acids that are centrally located in an acidic region of GCN4. In addition to their functional separation, the DNA binding and transcriptional activation regions of the protein can be separated physically by elastase cleavage. The implications of these results for the mechanisms of DNA sequence recognition and transcription activation are discussed.
Similar articles
- Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro.
Brandl CJ, Struhl K. Brandl CJ, et al. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2652-6. doi: 10.1073/pnas.86.8.2652. Proc Natl Acad Sci U S A. 1989. PMID: 2649888 Free PMC article. - Translational regulation of GCN4 and the general amino acid control of yeast.
Hinnebusch AG. Hinnebusch AG. Annu Rev Microbiol. 2005;59:407-50. doi: 10.1146/annurev.micro.59.031805.133833. Annu Rev Microbiol. 2005. PMID: 16153175 Review. - The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae.
Hinnebusch AG. Hinnebusch AG. CRC Crit Rev Biochem. 1986;21(3):277-317. doi: 10.3109/10409238609113614. CRC Crit Rev Biochem. 1986. PMID: 3536302 Review.
Cited by
- Identification of plant transcriptional activation domains.
Morffy N, Van den Broeck L, Miller C, Emenecker RJ, Bryant JA Jr, Lee TM, Sageman-Furnas K, Wilkinson EG, Pathak S, Kotha SR, Lam A, Mahatma S, Pande V, Waoo A, Wright RC, Holehouse AS, Staller MV, Sozzani R, Strader LC. Morffy N, et al. Nature. 2024 Aug;632(8023):166-173. doi: 10.1038/s41586-024-07707-3. Epub 2024 Jul 17. Nature. 2024. PMID: 39020176 - Exportin-1 functions as an adaptor for transcription factor-mediated docking of chromatin at the nuclear pore complex.
Ge T, Brickner DG, Zehr K, VanBelzen DJ, Zhang W, Caffalette C, Ungerleider S, Marcou N, Chait B, Rout MP, Brickner JH. Ge T, et al. bioRxiv [Preprint]. 2024 May 13:2024.05.09.593355. doi: 10.1101/2024.05.09.593355. bioRxiv. 2024. PMID: 38798450 Free PMC article. Preprint. - Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73.
Li D, Kok CYL, Wang C, Ray D, Osterburg S, Dötsch V, Ghosh S, Sabapathy K. Li D, et al. Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2318591121. doi: 10.1073/pnas.2318591121. Epub 2024 May 13. Proc Natl Acad Sci U S A. 2024. PMID: 38739802 Free PMC article. - Intrinsically disordered regions (IDRs): A vague and confusing concept for protein function.
Struhl K. Struhl K. Mol Cell. 2024 Apr 4;84(7):1186-1187. doi: 10.1016/j.molcel.2024.02.023. Mol Cell. 2024. PMID: 38579676 Free PMC article. - Intrinsically disordered regions of the Msn2 transcription factor encode multiple functions using interwoven sequence grammars.
Mindel V, Brodsky S, Cohen A, Manadre W, Jonas F, Carmi M, Barkai N. Mindel V, et al. Nucleic Acids Res. 2024 Mar 21;52(5):2260-2272. doi: 10.1093/nar/gkad1191. Nucleic Acids Res. 2024. PMID: 38109289 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases