Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles - PubMed (original) (raw)
Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles
E Westhof et al. Biochemistry. 1986.
Abstract
The structure of yeast phenylalanine transfer RNA in the monoclinic form has been further refined by using the restrained least-squares method of Hendrickson and Konnert. For the 4019 reflections between 10 and 3 A, with magnitudes at least 3 times their standard deviations, the R factor is 16.8%. The variation of the atomic temperature factors along the sequence indicates that the major flexibility regions are the amino acid and anticodon stems. The two strands of the amino acid helix exhibit large differential temperature factors, suggesting partial uncoiling or melting of the helix. In this work, the occupancy of all atoms was also varied. Residues D16 and D17 of the dihydrouridine loop as well as U33 and G37 of the anticodon loop have occupancies around 70%, indicating some local disorder or large-scale mobility at these positions. One hundred fifteen solvent molecules, including five magnesium ions, were found in difference maps. The role of several water molecules is clearly related to the stabilization of the secondary and tertiary interactions. The gold sites, which were not previously discussed, are described and show an energetically favored binding mode similar to that of cobalt and nickel complexes with nucleotides.
Similar articles
- Crystallographic refinement of yeast aspartic acid transfer RNA.
Westhof E, Dumas P, Moras D. Westhof E, et al. J Mol Biol. 1985 Jul 5;184(1):119-45. doi: 10.1016/0022-2836(85)90048-8. J Mol Biol. 1985. PMID: 3897553 - Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals.
Westhof E, Dumas P, Moras D. Westhof E, et al. Acta Crystallogr A. 1988 Mar 1;44 ( Pt 2):112-23. Acta Crystallogr A. 1988. PMID: 3272146 - Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution.
Schneider G, Lindqvist Y, Lundqvist T. Schneider G, et al. J Mol Biol. 1990 Feb 20;211(4):989-1008. doi: 10.1016/0022-2836(90)90088-4. J Mol Biol. 1990. PMID: 2107319 - Loop stereochemistry and dynamics in transfer RNA.
Westhof E, Dumas P, Moras D. Westhof E, et al. J Biomol Struct Dyn. 1983 Oct;1(2):337-55. doi: 10.1080/07391102.1983.10507446. J Biomol Struct Dyn. 1983. PMID: 6401114 Review. - Hydration of transfer RNA molecules: a crystallographic study.
Westhof E, Dumas P, Moras D. Westhof E, et al. Biochimie. 1988 Feb;70(2):145-65. doi: 10.1016/0300-9084(88)90056-9. Biochimie. 1988. PMID: 3134940 Review.
Cited by
- The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function.
Finet O, Yague-Sanz C, Marchand F, Hermand D. Finet O, et al. RNA Biol. 2022 Jan;19(1):735-750. doi: 10.1080/15476286.2022.2078094. RNA Biol. 2022. PMID: 35638108 Free PMC article. Review. - Predicting ion binding properties for RNA tertiary structures.
Tan ZJ, Chen SJ. Tan ZJ, et al. Biophys J. 2010 Sep 8;99(5):1565-76. doi: 10.1016/j.bpj.2010.06.029. Biophys J. 2010. PMID: 20816069 Free PMC article. - Predicting Monovalent Ion Correlation Effects in Nucleic Acids.
Sun LZ, Zhou Y, Chen SJ. Sun LZ, et al. ACS Omega. 2019 Aug 5;4(8):13435-13446. doi: 10.1021/acsomega.9b01689. eCollection 2019 Aug 20. ACS Omega. 2019. PMID: 31460472 Free PMC article. - Competitive Binding of Mg2+ and Na+ Ions to Nucleic Acids: From Helices to Tertiary Structures.
Xi K, Wang FH, Xiong G, Zhang ZL, Tan ZJ. Xi K, et al. Biophys J. 2018 Apr 24;114(8):1776-1790. doi: 10.1016/j.bpj.2018.03.001. Biophys J. 2018. PMID: 29694858 Free PMC article. - Visualizing the solvent-inaccessible core of a group II intron ribozyme.
Swisher J, Duarte CM, Su LJ, Pyle AM. Swisher J, et al. EMBO J. 2001 Apr 17;20(8):2051-61. doi: 10.1093/emboj/20.8.2051. EMBO J. 2001. PMID: 11296237 Free PMC article.