Probiotic effects on anxiety-like behavior in animal models - PubMed (original) (raw)

. 2022 Apr 7;33(6):691-701.

doi: 10.1515/revneuro-2021-0173. Print 2022 Aug 26.

Affiliations

Probiotic effects on anxiety-like behavior in animal models

Robert Lalonde et al. Rev Neurosci. 2022.

Abstract

Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.

Keywords: GABA; anxiolytics; bifidobacteria; elevated plus-maze; fear; lactobacilli; light-dark box; open-field; prebiotics.

© 2022 Walter de Gruyter GmbH, Berlin/Boston.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ahlawat, S., Shankar, A., Vandna Mohan, H., and Sharma, K.K. (2021). Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Toxicol. Appl. Pharmacol. 431: 115741, https://doi.org/10.1016/j.taap.2021.115741.
    1. Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L., and Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37: 1885–1895, https://doi.org/10.1016/j.psyneuen.2012.03.024.
    1. Akkasheh, G., Kashani-Poor, Z., Tajabadi-Ebrahimi, M., Jafari, P., Akbari, H., Taghizadeh, M., Memarzadeh, M.R., Asemi, Z., and Esmaillzadeh, A. (2016). Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32: 315–320, https://doi.org/10.1016/j.nut.2015.09.003.
    1. Allen, A.P., Hutch, W., Borre, Y.E., Kennedy, P.J., Temko, A., Boylan, G., Murphy, E., Cryan, J.F., Dinan, T.G., and Clarke, G. (2016). Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6: e939, https://doi.org/10.1038/tp.2016.191.
    1. Altaib, H., Nakamura, K., Abe, M., Badr, Y., Yanase, E., Nomura, I., and Suzuki, T. (2021). Differences in the concentration of the fecal neurotransmitters GABA and glutamate are associated with microbial composition among healthy human subjects. Microorganisms 9: 378, https://doi.org/10.3390/microorganisms9020378.

Publication types

MeSH terms

Substances

LinkOut - more resources