Cenozoic megatooth sharks occupied extremely high trophic positions - PubMed (original) (raw)
. 2022 Jun 24;8(25):eabl6529.
doi: 10.1126/sciadv.abl6529. Epub 2022 Jun 22.
Michael L Griffiths 3, Sora L Kim 4, Zixuan C Rao 1, Kenshu Shimada 5 6 7, Martin A Becker 3, Harry M Maisch 8, Robert A Eagle 9, Chelesia A Clarke 3, Allison N Neumann 3, Molly E Karnes 4, Tina Lüdecke 10 11, Jennifer N Leichliter 10 12, Alfredo Martínez-García 13, Alliya A Akhtar 1, Xingchen T Wang 14, Gerald H Haug 13 15, Daniel M Sigman 1
Affiliations
- PMID: 35731884
- PMCID: PMC9217088
- DOI: 10.1126/sciadv.abl6529
Cenozoic megatooth sharks occupied extremely high trophic positions
Emma R Kast et al. Sci Adv. 2022.
Abstract
Trophic position is a fundamental characteristic of animals, yet it is unknown in many extinct species. In this study, we ground-truth the 15N/14N ratio of enameloid-bound organic matter (δ15NEB) as a trophic level proxy by comparison to dentin collagen δ15N and apply this method to the fossil record to reconstruct the trophic level of the megatooth sharks (genus Otodus). These sharks evolved in the Cenozoic, culminating in Otodus megalodon, a shark with a maximum body size of more than 15 m, which went extinct 3.5 million years ago. Very high δ15NEB values (22.9 ± 4.4‰) of O. megalodon from the Miocene and Pliocene show that it occupied a higher trophic level than is known for any marine species, extinct or extant. δ15NEB also indicates a dietary shift in sharks of the megatooth lineage as they evolved toward the gigantic O. megalodon, with the highest trophic level apparently reached earlier than peak size.
Figures
Fig. 1.. Comparison between δ15NEB and dentin collagen δ15N.
(A) δ15NEB versus dentin collagen δ15N for 13 modern C. taurus teeth. Open circles show each measured sample, the solid line is a Deming regression with a bootstrapped 95% CI shown by the shaded gray region, and the dashed line is 1:1. (B) Difference between δ15NEB and dentin collagen δ15N for the same measured samples (open circles) with a box plot of the distribution.
Fig. 2.. Shark enameloid-bound δ15N.
(A) Shark δ15NEB for each studied epoch, by taxon. Piscivorous shark teeth are plotted as gray circles. Otherwise, symbol shapes show the genus (triangle, Cretalamna; diamond, Otodus; square, Carcharodon) and colors show the species. Black symbols with error bars show the mean δ15NEB ± 1 SD for each genus. Numbers indicate the number of teeth measured. Overlaid tooth diagrams are scaled to the estimated total length of each species (22). The map shows locations of sampled shark teeth; white symbols are collecting localities, and larger gray circles group the teeth into broad locations, with the size according to number of teeth. (B) Species-averaged δ15NEB difference from contemporaneous piscivorous shark δ15NEB ± 1 SD. The trophic level offset (right axis) is calculated from this δ15NEB difference using a TDF of 2.5‰. Asterisks indicate species significantly different from contemporaneous piscivorous sharks (table S1).
Fig. 3.. Estimated diet δ15N of O. megalodon compared to modern shark and marine mammal δ15N.
(A) Gray bars show the estimated diet δ15N, calculated by subtracting the 1.7‰ offset between δ15NEB and dentin collagen δ15N and a TDF of 2.5‰ from each O. megalodon δ15NEB value. Curves show the distribution of modern shark (blue) and marine mammal (yellow) δ15N from the literature (data files S2 and S3). (B) Modern shark and (C) marine mammal δ15N plotted by family and sized by the number of individuals in each observation. Solid vertical line shows the average estimated diet δ15N of O. megalodon, and dashed vertical lines are the minimum and maximum estimated diet δ15N. Black x symbols in (B) are δ15NEB measurements of modern C. taurus (family Carchariidae) and C. carcharias (family Lamnidae). In (B), C. carcharias are highlighted with white filled symbols, and in (C), polar bears (family Ursidae) and transient orcas (family Delphinidae) are highlighted with the same symbols.
Fig. 4.. Trends in body size and trophic level of megatooth sharks (Otodus) through time, starting with their ancestor Cretalamna sp.
While body forms of depicted sharks are hypothetical, they are sized relative to their estimated conservative maximum body size (Cretalamna sp. 3.5 m, O. obliquus 8 m, O. auriculatus 9.5 m, O. angustidens 11.5 m, O. chubutensis 13.5 m, O. megalodon 15 m) (22) and positioned vertically by their average δ15NEB difference from contemporaneous piscivorous sharks. Ages are the boundaries between the geological time intervals (“Ma ago”, million years ago). Illustration by Christina Spence Morgan, copyright 2021.
Similar articles
- Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes.
McCormack J, Griffiths ML, Kim SL, Shimada K, Karnes M, Maisch H, Pederzani S, Bourgon N, Jaouen K, Becker MA, Jöns N, Sisma-Ventura G, Straube N, Pollerspöck J, Hublin JJ, Eagle RA, Tütken T. McCormack J, et al. Nat Commun. 2022 May 31;13(1):2980. doi: 10.1038/s41467-022-30528-9. Nat Commun. 2022. PMID: 35641494 Free PMC article. - Endothermic physiology of extinct megatooth sharks.
Griffiths ML, Eagle RA, Kim SL, Flores RJ, Becker MA, Maisch HM 4th, Trayler RB, Chan RL, McCormack J, Akhtar AA, Tripati AK, Shimada K. Griffiths ML, et al. Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2218153120. doi: 10.1073/pnas.2218153120. Epub 2023 Jun 26. Proc Natl Acad Sci U S A. 2023. PMID: 37364100 Free PMC article. - Use of nursery areas by the extinct megatooth shark Otodus megalodon (Chondrichthyes: Lamniformes).
Herraiz JL, Ribé J, Botella H, Martínez-Pérez C, Ferrón HG. Herraiz JL, et al. Biol Lett. 2020 Nov;16(11):20200746. doi: 10.1098/rsbl.2020.0746. Epub 2020 Nov 25. Biol Lett. 2020. PMID: 33232650 Free PMC article. - Ecophysiological steps of marine adaptation in extant and extinct non-avian tetrapods.
Motani R, Vermeij GJ. Motani R, et al. Biol Rev Camb Philos Soc. 2021 Oct;96(5):1769-1798. doi: 10.1111/brv.12724. Epub 2021 Apr 26. Biol Rev Camb Philos Soc. 2021. PMID: 33904243 Review. - Diet Composition and Trophic Ecology of Northeast Pacific Ocean Sharks.
Bizzarro JJ, Carlisle AB, Smith WD, Cortés E. Bizzarro JJ, et al. Adv Mar Biol. 2017;77:111-148. doi: 10.1016/bs.amb.2017.06.001. Epub 2017 Aug 18. Adv Mar Biol. 2017. PMID: 28882212 Review.
Cited by
- Body size predicts ontogenetic nitrogen stable-isotope (δ15N) variation, but has little relationship with trophic level in ectotherm vertebrate predators.
Villamarín F, Jardine TD, Bunn SE, Malvasio A, Piña CI, Jacobi CM, Araújo DD, de Brito ES, de Moraes Carvalho F, da Costa ID, Verdade LM, Lara N, de Camargo PB, Miorando PS, Portelinha TCG, Marques TS, Magnusson WE. Villamarín F, et al. Sci Rep. 2024 Jun 19;14(1):14102. doi: 10.1038/s41598-024-61969-5. Sci Rep. 2024. PMID: 38890338 Free PMC article. - White shark comparison reveals a slender body for the extinct megatooth shark, Otodus megalodon (Lamniformes: Otodontidae).
Sternes PC, Jambura PL, Türtscher J, Kriwet J, Siversson M, Feichtinger I, Naylor GJP, Summers AP, Maisey JG, Tomita T, Moyer JK, Higham TE, da Silva JPCB, Bornatowski H, Long DJ, Perez VJ, Collareta A, Underwood C, Ward DJ, Vullo R, González-Barba G, Maisch HM, Griffiths ML, Becker MA, Wood JJ, Shimada K. Sternes PC, et al. Palaeontol Electronica. 2024 Jan 1;27(1):a7. doi: 10.26879/1345. eCollection 2024 Jan 1. Palaeontol Electronica. 2024. PMID: 39404696 Free PMC article. - Tooth enamel nitrogen isotope composition records trophic position: a tool for reconstructing food webs.
Leichliter JN, Lüdecke T, Foreman AD, Bourgon N, Duprey NN, Vonhof H, Souksavatdy V, Bacon AM, Sigman DM, Tütken T, Martínez-García A. Leichliter JN, et al. Commun Biol. 2023 Apr 7;6(1):373. doi: 10.1038/s42003-023-04744-y. Commun Biol. 2023. PMID: 37029186 Free PMC article. - Cautionary tales on the use of proxies to estimate body size and form of extinct animals.
Gayford JH, Engelman RK, Sternes PC, Itano WM, Bazzi M, Collareta A, Salas-Gismondi R, Shimada K. Gayford JH, et al. Ecol Evol. 2024 Sep 2;14(9):e70218. doi: 10.1002/ece3.70218. eCollection 2024 Sep. Ecol Evol. 2024. PMID: 39224151 Free PMC article. - The Deep Past of the White Shark, Carcharodon carcharias, in the Mediterranean Sea: A Synthesis of Its Palaeobiology and Palaeoecology.
Collareta A, Casati S, Di Cencio A, Bianucci G. Collareta A, et al. Life (Basel). 2023 Oct 20;13(10):2085. doi: 10.3390/life13102085. Life (Basel). 2023. PMID: 37895466 Free PMC article. Review.
References
- Klompmaker A. A., Kelley P. H., Chattopadhyay D., Clements J. C., Huntley J. W., Kowalewski M., Predation in the marine fossil record: Studies, data, recognition, environmental factors, and behavior. Earth Sci. Rev. 194, 472–520 (2019).
- Perez V. J., Godfrey S. J., Kent B. W., Weems R. E., Nance J. R., The transition between Carcharocles chubutensis and Carcharocles megalodon (Otodontidae, Chondrichthyes): Lateral cusplet loss through time. J. Vertebr. Paleontol. 38, e1546732 (2019).
- Motta P. J., Wilga C. D., Advances in the study of feeding behaviors, mechanisms, and mechanics of sharks. Environ. Biol. Fishes 60, 131–156 (2001).
- Lambert O., Bianucci G., Post K., De Muizon C., Salas-Gismondi R., Urbina M., Reumer J., The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466, 105–108 (2010). - PubMed