Mars Oxygen ISRU Experiment (MOXIE)-Preparing for human Mars exploration - PubMed (original) (raw)
. 2022 Sep 2;8(35):eabp8636.
doi: 10.1126/sciadv.abp8636. Epub 2022 Aug 31.
Michael H Hecht 2, Donald Rapp 3, Joseph J Hartvigsen 4, Jason G SooHoo 2, Asad M Aboobaker 5, John B McClean 2, Andrew M Liu 1, Eric D Hinterman 1, Maya Nasr 1, Shravan Hariharan 1, Kyle J Horn 1, Forrest E Meyen 6, Harald Okkels 7, Parker Steen 2, Singaravelu Elangovan 4, Christopher R Graves 8, Piyush Khopkar 9, Morten B Madsen 7, Gerald E Voecks 10, Peter H Smith 11, Theis L Skafte 8, Koorosh R Araghi 12, David J Eisenman 5
Affiliations
- PMID: 36044563
- PMCID: PMC9432831
- DOI: 10.1126/sciadv.abp8636
Mars Oxygen ISRU Experiment (MOXIE)-Preparing for human Mars exploration
Jeffrey A Hoffman et al. Sci Adv. 2022.
Abstract
MOXIE [Mars Oxygen In Situ Resource Utilization (ISRU) Experiment] is the first demonstration of ISRU on another planet, producing oxygen by solid oxide electrolysis of carbon dioxide in the martian atmosphere. A scaled-up MOXIE would contribute to sustainable human exploration of Mars by producing on-site the tens of tons of oxygen required for a rocket to transport astronauts off the surface of Mars, instead of having to launch hundreds of tons of material from Earth's surface to transport the required oxygen to Mars. MOXIE has produced oxygen seven times between landing in February 2021 and the end of 2021 and will continue to demonstrate oxygen production during night and day throughout all martian seasons. This paper reviews what MOXIE has accomplished and the implications for larger-scale oxygen-producing systems.
Figures
Fig. 1.. MOXIE with the front cover removed, showing compressor and SOXE assemblies.
The inlet filter, sensor and flow control panel, and electronics are not shown. The dimensions of the MOXIE chassis are 23.9 cm by 23.9 cm by 30.9 cm.
Fig. 2.. Diurnal maximum (nighttime) and minimum (daytime) atmospheric density predicted (13) at the Perseverance landing site, Jezero crater, over one Mars year (668 sols).
The circles show MOXIE runs completed in 2021, FM OC9 to OC15. The star shows the anticipated MOXIE run during the annual maximum atmospheric density.
Fig. 3.. Nernst potentials for oxygen and carbon formation versus input mass flow for several rates of oxygen production at an operating temperature of 800°C.
The two circles and the vertical line show reference segment conditions of 55 g/hour of intake and 6 g/hour of oxygen production. The dark arrows show the safe voltage zone for oxygen production, with no coking under these conditions. The vertical error bar reflects the effect of uncertainty in the lead resistance (see in the “Diagnostic runs” section) on the voltage applied to the cells. The horizontal error bar shows the uncertainty in determining the mass flow rate.
Fig. 4.. Measured oxygen purity as a function of the nominal pressure difference between cathode and anode, normalized by the anode pressure (FM OC13).
The x axis is determined by the measured differential exhaust pressure, which is smaller than the actual SOXE pressure. The gray area represents the range between the best fit to the composition data (higher purity) and a more physically reasonable model (lower purity). Note that other MOXIE runs were operated at even higher values of Δ_P_/_P_AEx but were not part of this focused diagnostic.
Fig. 5.. MOXIE’s iASR is seen to increase slowly with operating cycles.
Similar articles
- In-situ resource utilization technologies for Mars life support systems.
Sridhar KR, Finn JE, Kliss MH. Sridhar KR, et al. Adv Space Res. 2000;25(2):249-55. doi: 10.1016/s0273-1177(99)00955-2. Adv Space Res. 2000. PMID: 11542809 - Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy.
Kruyer NS, Realff MJ, Sun W, Genzale CL, Peralta-Yahya P. Kruyer NS, et al. Nat Commun. 2021 Oct 25;12(1):6166. doi: 10.1038/s41467-021-26393-7. Nat Commun. 2021. PMID: 34697313 Free PMC article. - Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars.
Vakkada Ramachandran A, Zorzano MP, Martín-Torres J. Vakkada Ramachandran A, et al. Sensors (Basel). 2021 Nov 8;21(21):7421. doi: 10.3390/s21217421. Sensors (Basel). 2021. PMID: 34770727 Free PMC article. - Biohazard potential of putative Martian organisms during missions to Mars.
Warmflash D, Larios-Sanz M, Jones J, Fox GE, McKay DS. Warmflash D, et al. Aviat Space Environ Med. 2007 Apr;78(4 Suppl):A79-88. Aviat Space Environ Med. 2007. PMID: 17511302 Review. - Growing crops for space explorers on the moon, Mars, or in space.
Salisbury FB. Salisbury FB. Adv Space Biol Med. 1999;7:131-62. doi: 10.1016/s1569-2574(08)60009-x. Adv Space Biol Med. 1999. PMID: 10660775 Review.
Cited by
- Toward the utilisation of resources in space: knowledge gaps, open questions, and priorities.
Cilliers J, Hadler K, Rasera J. Cilliers J, et al. NPJ Microgravity. 2023 Mar 25;9(1):22. doi: 10.1038/s41526-023-00274-3. NPJ Microgravity. 2023. PMID: 36966159 Free PMC article. Review. - About feasibility of SpaceX's human exploration Mars mission scenario with Starship.
Maiwald V, Bauerfeind M, Fälker S, Westphal B, Bach C. Maiwald V, et al. Sci Rep. 2024 May 23;14(1):11804. doi: 10.1038/s41598-024-54012-0. Sci Rep. 2024. PMID: 38782962 Free PMC article. - Splitting CO2 in Intense Pulsed Plasma Jets.
Scurtu A, Ticoş D, Mitu ML, Diplașu C, Udrea N, Ticoș CM. Scurtu A, et al. Int J Mol Sci. 2023 Apr 7;24(8):6899. doi: 10.3390/ijms24086899. Int J Mol Sci. 2023. PMID: 37108062 Free PMC article. - Production of Martian fiber by in-situ resource utilization strategy.
Guo ZS, Xing D, Xi XY, Liang CG, Hao B, Zeng X, Tang H, Chen H, Yin W, Zhang P, Zhou K, Zheng Q, Ma PC. Guo ZS, et al. iScience. 2024 Jun 28;27(8):110408. doi: 10.1016/j.isci.2024.110408. eCollection 2024 Aug 16. iScience. 2024. PMID: 39108726 Free PMC article. - Determination of Kinematic Viscosity of Mg(ClO4)2 and KOH Brines Saturated with CO2 at Sub-Zero Temperatures.
Sargeant E, Rodriguez P. Sargeant E, et al. Molecules. 2023 Jul 25;28(15):5641. doi: 10.3390/molecules28155641. Molecules. 2023. PMID: 37570611 Free PMC article.
References
- Hecht M., Hoffman J., Rapp D., McClean J., SooHoo J., Schaefer R., Aboobaker A., Mellstrom J., Hartvigsen J., Meyen F., Hinterman E., Voecks G., Liu A., Nasr M., Lewis J., Johnson J., Guernsey C., Swoboda J., Eckert C., Alcalde C., Poirier M., Khopkar P., Elangovan S., Madsen M., Smith P., Graves C., Sanders G., Araghi K., de la Torre Juarez M., Larsen D., Agui J., Burns A., Lackner K., Nielsen R., Pike T., Tata B., Wilson K., Brown T., Disarro T., Morris R., Schaefer R., Steinkraus R., Surampudi R., Werne T., Ponce A., Mars oxygen ISRU experiment (MOXIE). Space Sci. Rev. 217, 9 (2021).
- R. Zubrin, in The Case for Mars (Simon & Schuster, 1996), pp. 16, 157, 165.
- Ash R. L., Dowler W. L., Varsi G., Feasibility of rocket propellant production on Mars. Acta Astronaut. 5, 705–724 (1978).
- J. B. Sanders, D. I. Kaplan, Mars ISPP Precursor (MIP): The first flight demonstration of in-situ propellant production, in Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13 to 15 July 1998 (AIAA, 1998), p. 3306.
- B. G. Drake, Human Exploration of Mars: Design Reference Architecture 5.0 (N.J.S. Center, NASA, 2009).
LinkOut - more resources
Full Text Sources
Miscellaneous