Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin - PubMed (original) (raw)
Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin
R Elber et al. Science. 1987.
Abstract
A molecular dynamics simulation of myoglobin provides the first direct demonstration that the potential energy surface of a protein is characterized by a large number of thermally accessible minima in the neighborhood of the native structure (for example, approximately 2000 minima were sampled in a 300-picosecond trajectory). This is expected to have important consequences for the interpretation of the activity of transport proteins and enzymes. Different minima correspond to changes in the relative orientation of the helices coupled with side-chain rearrangements that preserve the close packing of the protein interior. The conformational space sampled by the simulation is similar to that found in the evolutionary development of the globins. Glasslike behavior is expected at low temperatures. The minima obtained from the trajectory do not satisfy certain criteria for ultrametricity.
Similar articles
- Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
Papaleo E, Mereghetti P, Fantucci P, Grandori R, De Gioia L. Papaleo E, et al. J Mol Graph Model. 2009 Jun-Jul;27(8):889-99. doi: 10.1016/j.jmgm.2009.01.006. Epub 2009 Feb 6. J Mol Graph Model. 2009. PMID: 19264523 - Protein-ligand dynamics. A 96 picosecond simulation of a myoglobin-xenon complex.
Tilton RF Jr, Singh UC, Kuntz ID Jr, Kollman PA. Tilton RF Jr, et al. J Mol Biol. 1988 Jan 5;199(1):195-211. doi: 10.1016/0022-2836(88)90389-0. J Mol Biol. 1988. PMID: 3351919 - Molecular dynamics simulations of heme reorientational motions in myoglobin.
Henry ER. Henry ER. Biophys J. 1993 Mar;64(3):869-85. doi: 10.1016/S0006-3495(93)81447-4. Biophys J. 1993. PMID: 8471731 Free PMC article. - Solvent accessibility, protein surfaces, and protein folding.
Lesk AM, Chothia C. Lesk AM, et al. Biophys J. 1980 Oct;32(1):35-47. doi: 10.1016/S0006-3495(80)84914-9. Biophys J. 1980. PMID: 7248454 Free PMC article. - Side-chain conformational entropy in protein folding.
Doig AJ, Sternberg MJ. Doig AJ, et al. Protein Sci. 1995 Nov;4(11):2247-51. doi: 10.1002/pro.5560041101. Protein Sci. 1995. PMID: 8563620 Free PMC article. Review.
Cited by
- Conformational substates and motions in myoglobin. External influences on structure and dynamics.
Hong MK, Braunstein D, Cowen BR, Frauenfelder H, Iben IE, Mourant JR, Ormos P, Scholl R, Schulte A, Steinbach PJ, et al. Hong MK, et al. Biophys J. 1990 Aug;58(2):429-36. doi: 10.1016/S0006-3495(90)82388-2. Biophys J. 1990. PMID: 2207247 Free PMC article. - Metastability of the folded states of globular proteins.
Honeycutt JD, Thirumalai D. Honeycutt JD, et al. Proc Natl Acad Sci U S A. 1990 May;87(9):3526-9. doi: 10.1073/pnas.87.9.3526. Proc Natl Acad Sci U S A. 1990. PMID: 2333297 Free PMC article. - Dynamic Monte Carlo study of the folding of a six-stranded Greek key globular protein.
Skolnick J, Kolinski A, Yaris R. Skolnick J, et al. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1229-33. doi: 10.1073/pnas.86.4.1229. Proc Natl Acad Sci U S A. 1989. PMID: 2919171 Free PMC article. - Entropy and free energy of a mobile protein loop in explicit water.
Cheluvaraja S, Mihailescu M, Meirovitch H. Cheluvaraja S, et al. J Phys Chem B. 2008 Aug 7;112(31):9512-22. doi: 10.1021/jp801827f. Epub 2008 Jul 10. J Phys Chem B. 2008. PMID: 18613721 Free PMC article. - Visualizing ensembles in structural biology.
Melvin RL, Salsbury FR Jr. Melvin RL, et al. J Mol Graph Model. 2016 Jun;67:44-53. doi: 10.1016/j.jmgm.2016.05.001. Epub 2016 May 4. J Mol Graph Model. 2016. PMID: 27179343 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources