Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex - PubMed (original) (raw)
- PMID: 3803504
- DOI: 10.1007/BF00243841
Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex
H O Reiter et al. Exp Brain Res. 1986.
Abstract
Recordings from single units in kitten primary visual cortex show that a reversible blockade of the discharge activities of cortical neurons and geniculocortical afferent terminals by intracortical infusion of the sodium channel blocker tetrodotoxin (TTX) completely prevented the ocular dominance shift that would normally be seen after monocular deprivation. The blockade of cortical plasticity, like the blockade of discharge activity, was reversible, and plasticity was restored following recovery from the effects of TTX. These results extend previous work suggesting involvement of electrical activity at the level of the cortex in the phenomenon of cortical plasticity by demonstrating an absolute requirement for discharge activities in the primary visual cortex.
Similar articles
- Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity.
Caleo M, Lodovichi C, Maffei L. Caleo M, et al. Eur J Neurosci. 1999 Aug;11(8):2979-84. doi: 10.1046/j.1460-9568.1999.00737.x. Eur J Neurosci. 1999. PMID: 10457192 - Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
Chapman B, Jacobson MD, Reiter HO, Stryker MP. Chapman B, et al. Nature. 1986 Nov 13-19;324(6093):154-6. doi: 10.1038/324154a0. Nature. 1986. PMID: 3785380 - Cellular mechanisms of visual cortical plasticity: a game of cat and mouse.
Gordon JA. Gordon JA. Learn Mem. 1997 Sep-Oct;4(3):245-61. doi: 10.1101/lm.4.3.245. Learn Mem. 1997. PMID: 10456067 Review. No abstract available. - Sleep on it: cortical reorganization after-the-fact.
Hoffman KL, McNaughton BL. Hoffman KL, et al. Trends Neurosci. 2002 Jan;25(1):1-2. doi: 10.1016/s0166-2236(00)02005-1. Trends Neurosci. 2002. PMID: 11801320 Review.
Cited by
- Visual responses in adult cat visual cortex depend on N-methyl-D-aspartate receptors.
Miller KD, Chapman B, Stryker MP. Miller KD, et al. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5183-7. doi: 10.1073/pnas.86.13.5183. Proc Natl Acad Sci U S A. 1989. PMID: 2567996 Free PMC article. - Inhibition of nitric oxide synthase does not prevent ocular dominance plasticity in kitten visual cortex.
Ruthazer ES, Gillespie DC, Dawson TM, Snyder SH, Stryker MP. Ruthazer ES, et al. J Physiol. 1996 Jul 15;494 ( Pt 2)(Pt 2):519-27. doi: 10.1113/jphysiol.1996.sp021510. J Physiol. 1996. PMID: 8842009 Free PMC article. - Blockade of action potential activity alters initial arborization of thalamic axons within cortical layer 4.
Herrmann K, Shatz CJ. Herrmann K, et al. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11244-8. doi: 10.1073/pnas.92.24.11244. Proc Natl Acad Sci U S A. 1995. PMID: 7479973 Free PMC article. - Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited.
Reiter HO, Stryker MP. Reiter HO, et al. Proc Natl Acad Sci U S A. 1988 May;85(10):3623-7. doi: 10.1073/pnas.85.10.3623. Proc Natl Acad Sci U S A. 1988. PMID: 3285347 Free PMC article. - A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves.
Elliott T, Shadbolt NR. Elliott T, et al. J Neurosci. 1999 Sep 15;19(18):7951-70. doi: 10.1523/JNEUROSCI.19-18-07951.1999. J Neurosci. 1999. PMID: 10479696 Free PMC article.
References
- J Neurosci. 1983 May;3(5):907-14 - PubMed
- J Neurosci. 1986 Aug;6(8):2117-33 - PubMed
- Science. 1976 Oct 8;194(4261):206-9 - PubMed
- Exp Brain Res. 1984;57(1):176-200 - PubMed
- Nature. 1977 Nov 10;270(5633):177-8 - PubMed