Rapid and efficient site-specific mutagenesis without phenotypic selection - PubMed (original) (raw)
Rapid and efficient site-specific mutagenesis without phenotypic selection
T A Kunkel. Proc Natl Acad Sci U S A. 1985 Jan.
Abstract
Several single-base substitution mutations have been introduced into the lacZ alpha gene in cloning vector M13mp2, at 40-60% efficiency, in a rapid procedure requiring only transfection of the unfractionated products of standard in vitro mutagenesis reactions. Two simple additional treatments of the DNA, before transfection, produce a site-specific mutation frequency approaching 100%. The approach is applicable to phenotypically silent mutations in addition to those that can be selected. The high efficiency, approximately equal to 10-fold greater than that observed using current methods without enrichment procedures, is obtained by using a DNA template containing several uracil residues in place of thymine. This template has normal coding potential for the in vitro reactions typical of site-directed mutagenesis protocols but is not biologically active upon transfection into a wild-type (i.e., ung+) Escherichia coli host cell. Expression of the desired change, present in the newly synthesized non-uracil-containing covalently closed circular complementary strand, is thus strongly favored. The procedure has been applied to mutations introduced via both oligonucleotides and error-prone polymerization. In addition to its utility in changing DNA sequences, this approach can potentially be used to examine the biological consequences of specific lesions placed at defined positions within a gene.
Similar articles
- Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts.
Sanderson RJ, Mosbaugh DW. Sanderson RJ, et al. J Biol Chem. 1998 Sep 18;273(38):24822-31. doi: 10.1074/jbc.273.38.24822. J Biol Chem. 1998. PMID: 9733786 - Propylene oxide mutagenesis at template cytosine residues.
Snow ET, Singh J, Koenig KL, Solomon JJ. Snow ET, et al. Environ Mol Mutagen. 1994;23(4):274-80. doi: 10.1002/em.2850230403. Environ Mol Mutagen. 1994. PMID: 8013473 - Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis.
Shroyer MJ, Bennett SE, Putnam CD, Tainer JA, Mosbaugh DW. Shroyer MJ, et al. Biochemistry. 1999 Apr 13;38(15):4834-45. doi: 10.1021/bi982986j. Biochemistry. 1999. PMID: 10200172 - Uracil-initiated base excision DNA repair synthesis fidelity in human colon adenocarcinoma LoVo and Escherichia coli cell extracts.
Sanderson RJ, Bennett SE, Sung JS, Mosbaugh DW. Sanderson RJ, et al. Prog Nucleic Acid Res Mol Biol. 2001;68:165-88. doi: 10.1016/s0079-6603(01)68098-x. Prog Nucleic Acid Res Mol Biol. 2001. PMID: 11554295 Review. - Site-directed mutagenesis using a uracil-containing phagemid template.
Trower MK. Trower MK. Methods Mol Biol. 1994;31:67-77. doi: 10.1385/0-89603-258-2:67. Methods Mol Biol. 1994. PMID: 7921039 Review. No abstract available.
Cited by
- Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21.
Leung I, Dekel A, Shifman JM, Sidhu SS. Leung I, et al. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8705-10. doi: 10.1073/pnas.1524648113. Epub 2016 Jul 19. Proc Natl Acad Sci U S A. 2016. PMID: 27436899 Free PMC article. - Monoclonal antibodies to the V2 domain of MN-rgp120: fine mapping of epitopes and inhibition of α4β7 binding.
Nakamura GR, Fonseca DP, O'Rourke SM, Vollrath AL, Berman PW. Nakamura GR, et al. PLoS One. 2012;7(6):e39045. doi: 10.1371/journal.pone.0039045. Epub 2012 Jun 13. PLoS One. 2012. PMID: 22720026 Free PMC article. - A Wee1 checkpoint inhibits anaphase onset.
Lianga N, Williams EC, Kennedy EK, Doré C, Pilon S, Girard SL, Deneault JS, Rudner AD. Lianga N, et al. J Cell Biol. 2013 Jun 10;201(6):843-62. doi: 10.1083/jcb.201212038. J Cell Biol. 2013. PMID: 23751495 Free PMC article. - Significance of Individual Domains of ClpL: A Novel Chaperone from Streptococcus mutans.
Jana B, Biswas I. Jana B, et al. Biochemistry. 2020 Sep 15;59(36):3368-3379. doi: 10.1021/acs.biochem.0c00544. Epub 2020 Aug 19. Biochemistry. 2020. PMID: 32791831 Free PMC article. - Computational protein design enables a novel one-carbon assimilation pathway.
Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E, Gallaher JL, Bale J, Yoshikuni Y, Gelb MH, Keasling JD, Stoddard BL, Lidstrom ME, Baker D. Siegel JB, et al. Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3704-9. doi: 10.1073/pnas.1500545112. Epub 2015 Mar 9. Proc Natl Acad Sci U S A. 2015. PMID: 25775555 Free PMC article.
References
- Nature. 1982 Feb 25;295(5851):708-10 - PubMed
- Proc Natl Acad Sci U S A. 1977 Sep;74(9):3642-6 - PubMed
- Nucleic Acids Res. 1982 Oct 25;10(20):6475-85 - PubMed
- Nucleic Acids Res. 1983 Jun 25;11(12):4229-39 - PubMed
- Methods Enzymol. 1983;100:468-500 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources