Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study - PubMed (original) (raw)
Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study
L Záborszky et al. Neuroscience. 1985 Feb.
Abstract
Immunocytochemistry, radioimmunological assay after surgical cuts, anterograde degeneration and retrograde tracing of fluorescent dyes were used in order to elucidate the cholecystokinin-containing afferents to the ventral striatum (nucleus accumbens, olfactory tubercle and ventral part of the caudate-putamen). In agreement with the report by Hökfelt et al., midbrain cholecystokinin-containing cells supply the posteromedial parts of the nucleus accumbens and olfactory tubercle, as well as the subcommissural part of caudate-putamen. Brainstem cholecystokinin afferents also reach more rostral parts of the ventral striatum including the rostrolateral olfactory tubercle. The ascending cholecystokinin axons enter the medial forebrain bundle at the meso-diencephalic border and maintain a rough medial to lateral topography at the caudal diencephalon. A second major cholecystokinin pathway, with possible origin in the piriform and medial prefrontal cortices and/or the amygdala, projects to the subcommissural caudate-putamen, the olfactory tubercle, the lateral part of the nucleus accumbens and the dorsal part of the bed nucleus of stria terminalis. Finally, the rostral part of the dorsal caudate-putamen receives a substantial cholecystokinin innervation from the basolateral amygdala and possibly from the neocortex. According to radioimmunological data, the descending telencephalic cholecystokinin system accounts for about 60% of all cholecystokinin in the rostral forebrain. The combined use of morphological and biochemical methods provided evidence for a partially overlapping distribution and possible interaction between an ascending brainstem and descending telencephalic cholecystokinin fiber systems within the striatum and related rostral forebrain areas.
Similar articles
- Forebrain projections from cholecystokininlike-immunoreactive neurons in the rat midbrain.
Seroogy KB, Fallon JH. Seroogy KB, et al. J Comp Neurol. 1989 Jan 15;279(3):415-35. doi: 10.1002/cne.902790307. J Comp Neurol. 1989. PMID: 2918078 - Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum.
Berendse HW, Groenewegen HJ. Berendse HW, et al. J Comp Neurol. 1990 Sep 8;299(2):187-228. doi: 10.1002/cne.902990206. J Comp Neurol. 1990. PMID: 2172326 - Efferent connections of the striatopallidal and amygdaloid components of the substantia innominata in the cat: projections to the nucleus accumbens and caudate nucleus.
Spooren WP, Veening JG, Groenewegen HJ, Cools AR. Spooren WP, et al. Neuroscience. 1991;44(2):431-47. doi: 10.1016/0306-4522(91)90067-x. Neuroscience. 1991. PMID: 1944894 - On the significance of subterritories in the "accumbens" part of the rat ventral striatum.
Zahm DS, Brog JS. Zahm DS, et al. Neuroscience. 1992 Oct;50(4):751-67. doi: 10.1016/0306-4522(92)90202-d. Neuroscience. 1992. PMID: 1448200 Review. - Neurochemical organization of the ventral striatum's olfactory tubercle.
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Cansler HL, et al. J Neurochem. 2020 Feb;152(4):425-448. doi: 10.1111/jnc.14919. Epub 2020 Jan 7. J Neurochem. 2020. PMID: 31755104 Free PMC article. Review.
Cited by
- Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens.
Martin TA, Jayanthi S, McCoy MT, Brannock C, Ladenheim B, Garrett T, Lehrmann E, Becker KG, Cadet JL. Martin TA, et al. PLoS One. 2012;7(3):e34236. doi: 10.1371/journal.pone.0034236. Epub 2012 Mar 28. PLoS One. 2012. PMID: 22470541 Free PMC article. - Micro-opioid receptor alkylation in the ventral pallidum and ventral tegmental area, but not in the nucleus accumbens, attenuates the effects of heroin on cocaine self-administration in rats.
Martin TJ, Coller M, Co C, Smith JE. Martin TJ, et al. Neuropsychopharmacology. 2008 Apr;33(5):1171-8. doi: 10.1038/sj.npp.1301490. Epub 2007 Jun 20. Neuropsychopharmacology. 2008. PMID: 17581528 Free PMC article. - Neural circuit mechanisms of the cholecystokinin (CCK) neuropeptide system in addiction.
Ma Y, Giardino WJ. Ma Y, et al. Addict Neurosci. 2022 Sep;3:100024. doi: 10.1016/j.addicn.2022.100024. Epub 2022 Jun 17. Addict Neurosci. 2022. PMID: 35983578 Free PMC article. - Distinct regions of the striatum underlying effort, movement initiation and effort discounting.
Suzuki S, Lawlor VM, Cooper JA, Arulpragasam AR, Treadway MT. Suzuki S, et al. Nat Hum Behav. 2021 Mar;5(3):378-388. doi: 10.1038/s41562-020-00972-y. Epub 2020 Nov 23. Nat Hum Behav. 2021. PMID: 33230282 Free PMC article. - Dopaminergic Regulation of Striatal Interneurons in Reward and Addiction: Focus on Alcohol.
Clarke R, Adermark L. Clarke R, et al. Neural Plast. 2015;2015:814567. doi: 10.1155/2015/814567. Epub 2015 Jul 13. Neural Plast. 2015. PMID: 26246915 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous