A precursor to a minor species of yeast tRNASer contains an intervening sequence - PubMed (original) (raw)

A precursor to a minor species of yeast tRNASer contains an intervening sequence

T Etcheverry et al. Cell. 1979 Sep.

Abstract

Certain tRNAs in S. cerevisiae (tRNATyr and tRNAPhe) arise via precursor molecules which are mature at the 5' and 3' termini but contain intervening sequences adjacent to the anticodon (Knapp et al., 1978; O'Farrell et al., 1978). In addition to these molecules, precursors to several other tRNAs accumulate in a temperature-sensitive mutant (ts136) at the nonpermissive temperature. We have analyzed one of these species and shown that it is a precursor to a minor species of tRNASer. This precursor is also mature at both termini and contains an intervening sequence of 19 nucleotides adjacent to the hypermodified A residue 3' to the anticodon. The sequence can be arranged in a secondary structure in which the anticodon stem is extended by additional base-pairing, and contains the sites of excision and ligation within two looped regions. Support for this structure was provided by analysis of the products of limited digestion with RNAase T1. recently Piper (1978) reported the isolation of a minor species of tRNASer which decodes UCG. He found this species to be structurally heterogeneous and determined that the less abundant form corresponds to the tRNA which is altered in the recessive lethal SUP-RL1 amber suppressor. Our data now suggest that the more abundant form may be restricted to reading UCA in vivo; thus mutation of the minor species would result in complete loss of UCG-decoding ability and explain the recessive lethality of SUP-RL1. We have shown that the precursor which accumulates in ts136 corresponds exclusively to this minor tRNASerUCG species. Our results suggest that this may be the only gene for tRNASer in yeast which contains an intervening sequence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances