Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors - PubMed (original) (raw)

Comparative Study

Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors

A Pazos et al. Brain Res. 1985.

Abstract

The distribution of serotonin-2 (5-HT2) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with four ligands: [3H]ketanserin, [3H]mesulergine, [3H]LSD and [3H]spiperone, which are reported to show high affinity for 5-HT2 receptors. Co-incubation with increasing concentrations of several well-known 5-HT2-selective drugs, such as pirenperone, cinanserin and ketanserin, resulted in an inhibition of the binding of the four 3H-labeled ligands to the same areas. However, all of them recognized, in addition to 5-HT2 sites, other populations of binding sites. Receptor densities were quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Our results reveal a heterogeneous distribution of 5-HT2 receptor densities in the rat brain. Very high concentrations were localized in the claustrum, olfactory tubercle and layer IV of the neocortex. The anterior olfactory nucleus, piriform cortex and layer I of neocortex were also rich in 5-HT2 receptors. Intermediate concentrations of receptors were found in caudate putamen, nucleus accumbens, layer V of neocortex, ventral dentate gyrus and mammillary bodies. Areas containing only low concentrations of receptors included the thalamus, hippocampus, brainstem, medulla, cerebellum and spinal cord. The specificity of the different ligands used is discussed in terms of the other populations of sites recognized by them. The distribution of 5-HT2 receptors here reported is discussed in correlation with (a) the known distribution of serotoninergic terminals, (b) the specific anatomical systems and (c) the central effects reported to be mediated by 5-HT2-selective drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances