Cholesterol-dependent tetanolysin damage to liposomes - PubMed (original) (raw)
Cholesterol-dependent tetanolysin damage to liposomes
C R Alving et al. Biochim Biophys Acta. 1979.
Abstract
Tetanolysin caused membrane damage, resulting in release of trapped glucose from liposomes containing cholesterol. Maximum glucose release occurred from liposomes that contained 50 mol% cholesterol. At higher or lower levels of cholesterol, glucose release was reduced and glucose release did not occur at all below 40 mol% cholesterol. The apparent activity of tetanolysin was not influenced by temperature (24 degrees C compared to 32 degrees C) or by liposomal phospholipid fatty acyl chain length. We conclude that tetanolysin caused cholesterol-dependent lysin-mediated damage to liposomes, possibly by means of a pore consisting of a complex of toxin and cholesterol.
Similar articles
- Membrane-damaging action of Clostridium perfringens alpha-toxin on phospholipid liposomes.
Nagahama M, Michiue K, Sakurai J. Nagahama M, et al. Biochim Biophys Acta. 1996 Apr 3;1280(1):120-6. doi: 10.1016/0005-2736(95)00288-x. Biochim Biophys Acta. 1996. PMID: 8634306 - Interaction between tetanolysin and Mycoplasma cell membrane.
Rottem S, Hardegree MC, Grabowski MW, Fornwald R, Barile MF. Rottem S, et al. Biochim Biophys Acta. 1976 Dec 14;455(3):876-88. doi: 10.1016/0005-2736(76)90057-2. Biochim Biophys Acta. 1976. PMID: 793633 - Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes.
Alving CR, Richards RL, Guirguis AA. Alving CR, et al. J Immunol. 1977 Jan;118(1):342-7. J Immunol. 1977. PMID: 830757 - Structural characteristics of tetanolysin and its binding to lipid vesicles.
Rottem S, Cole RM, Habig WH, Barile MF, Hardegree MC. Rottem S, et al. J Bacteriol. 1982 Nov;152(2):888-92. doi: 10.1128/jb.152.2.888-892.1982. J Bacteriol. 1982. PMID: 7130132 Free PMC article. - Effect of lipidic factors on membrane cholesterol topology--mode of binding of theta-toxin to cholesterol in liposomes.
Ohno-Iwashita Y, Iwamoto M, Ando S, Iwashita S. Ohno-Iwashita Y, et al. Biochim Biophys Acta. 1992 Aug 10;1109(1):81-90. doi: 10.1016/0005-2736(92)90190-w. Biochim Biophys Acta. 1992. PMID: 1504083
Cited by
- Binding, oligomerization, and pore formation by streptolysin O in erythrocytes and fibroblast membranes: detection of nonlytic polymers.
Walev I, Palmer M, Valeva A, Weller U, Bhakdi S. Walev I, et al. Infect Immun. 1995 Apr;63(4):1188-94. doi: 10.1128/iai.63.4.1188-1194.1995. Infect Immun. 1995. PMID: 7890371 Free PMC article. - Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins.
Tweten RK. Tweten RK. Infect Immun. 2005 Oct;73(10):6199-209. doi: 10.1128/IAI.73.10.6199-6209.2005. Infect Immun. 2005. PMID: 16177291 Free PMC article. Review. No abstract available. - Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity.
Shen Q, Xiong Q, Zhou K, Feng Q, Liu L, Tian T, Wu C, Xiong Y, Melia TJ, Lusk CP, Lin C. Shen Q, et al. J Am Chem Soc. 2023 Jan 18;145(2):1292-1300. doi: 10.1021/jacs.2c11226. Epub 2022 Dec 28. J Am Chem Soc. 2023. PMID: 36577119 Free PMC article. - Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis?
Savinov SN, Heuck AP. Savinov SN, et al. Toxins (Basel). 2017 Nov 23;9(12):381. doi: 10.3390/toxins9120381. Toxins (Basel). 2017. PMID: 29168745 Free PMC article. Review. - Binding of diphtheria toxin to phospholipids in liposomes.
Alving CR, Iglewski BH, Urban KA, Moss J, Richards RL, Sadoff JC. Alving CR, et al. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1986-90. doi: 10.1073/pnas.77.4.1986. Proc Natl Acad Sci U S A. 1980. PMID: 6929533 Free PMC article.