Flagellar movement: a sliding filament model - PubMed (original) (raw)
Flagellar movement: a sliding filament model
C J Brokaw. Science. 1972.
Abstract
A sliding filament mechanism appears to provide the most satisfactory basis for a simple feedback mechanism for the control of bend propagation and bend initiation by flagella, and is supported by strong experimental evidence. A computer simulation of the movements of a flagellar model based on the sliding filament mechanism demonstrates that this mechanism offers a sufficient explanation for the automatic generation of flagellar bending waves. Further computer simulation studies may provide insight into questions such as the applicability of the sliding filament mechanism to the generation of the more complicated asymmetrical bending patterns of cilia, and the control of the bending pattern by interaction between several sliding filament systems within a flagellum.
Similar articles
- Cross-bridge behavior in a sliding filament model for flagella.
Brokaw CJ. Brokaw CJ. Soc Gen Physiol Ser. 1975;30:165-79. Soc Gen Physiol Ser. 1975. PMID: 127383 Review. No abstract available. - Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model.
Brokaw CJ. Brokaw CJ. Biophys J. 1972 May;12(5):564-86. doi: 10.1016/S0006-3495(72)86104-6. Biophys J. 1972. PMID: 5030565 Free PMC article. - Models for oscillation and bend propagation by flagella.
Brokaw CJ. Brokaw CJ. Symp Soc Exp Biol. 1982;35:313-38. Symp Soc Exp Biol. 1982. PMID: 6223398 Review. - Lithium reversibly inhibits microtubule-based motility in sperm flagella.
Gibbons BH, Gibbons IR. Gibbons BH, et al. Nature. 1984 Jun 7-13;309(5968):560-2. doi: 10.1038/309560a0. Nature. 1984. PMID: 6728011 - Computer simulation of flagellar movement. VI. Simple curvature-controlled models are incompletely specified.
Brokaw CJ. Brokaw CJ. Biophys J. 1985 Oct;48(4):633-42. doi: 10.1016/S0006-3495(85)83819-4. Biophys J. 1985. PMID: 3840393 Free PMC article.
Cited by
- Intracellular connections between basal bodies promote the coordinated behavior of motile cilia.
Soh AWJ, Woodhams LG, Junker AD, Enloe CM, Noren BE, Harned A, Westlake CJ, Narayan K, Oakey JS, Bayly PV, Pearson CG. Soh AWJ, et al. Mol Biol Cell. 2022 Sep 15;33(11):br18. doi: 10.1091/mbc.E22-05-0150. Epub 2022 Jun 29. Mol Biol Cell. 2022. PMID: 35767367 Free PMC article. - Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates.
Soh AWJ, Pearson CG. Soh AWJ, et al. J Eukaryot Microbiol. 2022 Sep;69(5):e12880. doi: 10.1111/jeu.12880. Epub 2022 Jan 12. J Eukaryot Microbiol. 2022. PMID: 34897878 Free PMC article. Review. - Modelling Motility: The Mathematics of Spermatozoa.
Gaffney EA, Ishimoto K, Walker BJ. Gaffney EA, et al. Front Cell Dev Biol. 2021 Jul 20;9:710825. doi: 10.3389/fcell.2021.710825. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34354994 Free PMC article. Review. - Saturated fatty acids accelerate linear motility through mitochondrial ATP production in bull sperm.
Islam MM, Umehara T, Tsujita N, Shimada M. Islam MM, et al. Reprod Med Biol. 2021 May 6;20(3):289-298. doi: 10.1002/rmb2.12381. eCollection 2021 Jul. Reprod Med Biol. 2021. PMID: 34262396 Free PMC article. - A dynamic basal complex modulates mammalian sperm movement.
Khanal S, Leung MR, Royfman A, Fishman EL, Saltzman B, Bloomfield-Gadêlha H, Zeev-Ben-Mordehai T, Avidor-Reiss T. Khanal S, et al. Nat Commun. 2021 Jun 21;12(1):3808. doi: 10.1038/s41467-021-24011-0. Nat Commun. 2021. PMID: 34155206 Free PMC article.