Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications - PubMed (original) (raw)
Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications
R A Farrell et al. J Physiol. 1973 Sep.
Abstract
1. The studies described herein involve the use of light scattering measurements to characterize the ultrastructural arrangement of the constituent collagen fibrils in rabbit corneal stromas.2. Theoretical light scattering techniques for calculating the scattering to be expected from the structures revealed by electron micrographs are discussed, and comparison with the experimental light scattering tests the validity of these structures.3. The wave-length dependence of light transmission and of angular light scattering from normal corneas is in agreement with the short range ordering of collagen fibrils depicted in electron micrographs.4. The transmission measurements on oedematous rabbit corneas indicate that transmission decreases linearly with the ratio of thickness to normal thickness.5. The wave-length dependence of transmission through cold swollen corneas indicates that the increased scattering is caused by large inhomogeneities in the ultrastructure. Electron micrographs do, indeed, reveal the presence of such inhomogeneities in the form of large regions completely devoid of fibrils.
Similar articles
- On corneal transparency and its loss with swelling.
Farrell RA, McCally RL. Farrell RA, et al. J Opt Soc Am. 1976 Apr;66(4):342. doi: 10.1364/josa.66.000342. J Opt Soc Am. 1976. PMID: 1262983 - Corneal small-angle light-scattering theory: wavy fibril models.
Andreo RH, Farrell RA. Andreo RH, et al. J Opt Soc Am. 1982 Nov;72(11):1479-92. doi: 10.1364/josa.72.001479. J Opt Soc Am. 1982. PMID: 7143127 - Ultrastructure in anterior and posterior stroma of perfused human and rabbit corneas. Relation to transparency.
Freund DE, McCally RL, Farrell RA, Cristol SM, L'Hernault NL, Edelhauser HF. Freund DE, et al. Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1508-23. Invest Ophthalmol Vis Sci. 1995. PMID: 7601631 - Transparency, swelling and scarring in the corneal stroma.
Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S. Meek KM, et al. Eye (Lond). 2003 Nov;17(8):927-36. doi: 10.1038/sj.eye.6700574. Eye (Lond). 2003. PMID: 14631399 Review. - [Cultured human corneal endothelial cell transplantation].
Mimura T. Mimura T. Nippon Ganka Gakkai Zasshi. 2006 Nov;110(11):879-97. Nippon Ganka Gakkai Zasshi. 2006. PMID: 17134036 Review. Japanese.
Cited by
- The molecular basis of corneal transparency.
Hassell JR, Birk DE. Hassell JR, et al. Exp Eye Res. 2010 Sep;91(3):326-35. doi: 10.1016/j.exer.2010.06.021. Epub 2010 Jul 3. Exp Eye Res. 2010. PMID: 20599432 Free PMC article. Review. - Corneal crystallins and the development of cellular transparency.
Jester JV. Jester JV. Semin Cell Dev Biol. 2008 Apr;19(2):82-93. doi: 10.1016/j.semcdb.2007.09.015. Epub 2007 Oct 2. Semin Cell Dev Biol. 2008. PMID: 17997336 Free PMC article. Review. - Structural transformation of collagen fibrils in corneal stroma during drying. An x-ray scattering study.
Fratzl P, Daxer A. Fratzl P, et al. Biophys J. 1993 Apr;64(4):1210-4. doi: 10.1016/S0006-3495(93)81487-5. Biophys J. 1993. PMID: 8494978 Free PMC article. - Structure alterations and the spectral law of light diffusion during corneal edema.
Crouzy R. Crouzy R. Doc Ophthalmol. 1977 Feb 28;42(2):425-31. doi: 10.1007/BF02742258. Doc Ophthalmol. 1977. PMID: 862520
References
- Invest Ophthalmol. 1967 Dec;6(6):574-600 - PubMed
- J Opt Soc Am. 1969 Jun;59(6):766-74 - PubMed
- Am J Ophthalmol. 1956 Dec;42(6):907-10 - PubMed
- J Physiol. 1970 Oct;210(3):601-16 - PubMed
- Invest Ophthalmol. 1968 Oct;7(5):501-19 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources