Junctions between intimately apposed cell membranes in the vertebrate brain - PubMed (original) (raw)
Junctions between intimately apposed cell membranes in the vertebrate brain
M W Brightman et al. J Cell Biol. 1969 Mar.
Abstract
Certain junctions between ependymal cells, between astrocytes, and between some electrically coupled neurons have heretofore been regarded as tight, pentalaminar occlusions of the intercellular cleft. These junctions are now redefined in terms of their configuration after treatment of brain tissue in uranyl acetate before dehydration. Instead of a median dense lamina, they are bisected by a median gap 20-30 A wide which is continuous with the rest of the interspace. The patency of these "gap junctions" is further demonstrated by the penetration of horseradish peroxidase or lanthanum into the median gap, the latter tracer delineating there a polygonal substructure. However, either tracer can circumvent gap junctions because they are plaque-shaped rather than complete, circumferential belts. Tight junctions, which retain a pentalaminar appearance after uranyl acetate block treatment, are restricted primarily to the endothelium of parenchymal capillaries and the epithelium of the choroid plexus. They form rows of extensive, overlapping occlusions of the interspace and are neither circumvented nor penetrated by peroxidase and lanthanum. These junctions are morphologically distinguishable from the "labile" pentalaminar appositions which appear or disappear according to the preparative method and which do not interfere with the intercellular movement of tracers. Therefore, the interspaces of the brain are generally patent, allowing intercellular movement of colloidal materials. Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.
Similar articles
- Intercellular junctions and the development of the blood-brain barrier in Manduca sexta.
Lane NJ, Swales LS. Lane NJ, et al. Brain Res. 1979 May 25;168(2):227-45. doi: 10.1016/0006-8993(79)90166-5. Brain Res. 1979. PMID: 445142 - Tracer study on a paracellular route in experimental hydrocephalus.
Nakagawa Y, Cervós-Navarro J, Artigas J. Nakagawa Y, et al. Acta Neuropathol. 1985;65(3-4):247-54. doi: 10.1007/BF00687004. Acta Neuropathol. 1985. PMID: 3976360 - Fine structure of the ependyma and intercellular junctions in the area postrema of the rat.
Gotow T, Hashimoto PH. Gotow T, et al. Cell Tissue Res. 1979 Sep 3;201(2):207-25. doi: 10.1007/BF00235058. Cell Tissue Res. 1979. PMID: 509480 - Barriers in the immature brain.
Saunders NR, Knott GW, Dziegielewska KM. Saunders NR, et al. Cell Mol Neurobiol. 2000 Feb;20(1):29-40. doi: 10.1023/a:1006991809927. Cell Mol Neurobiol. 2000. PMID: 10690500 Review. - The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread.
Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G. Johanson C, et al. Toxicol Pathol. 2011 Jan;39(1):186-212. doi: 10.1177/0192623310394214. Epub 2010 Dec 28. Toxicol Pathol. 2011. PMID: 21189316 Review.
Cited by
- Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury.
Bretová K, Svobodová V, Dubový P. Bretová K, et al. Int J Mol Sci. 2024 Oct 12;25(20):10989. doi: 10.3390/ijms252010989. Int J Mol Sci. 2024. PMID: 39456773 Free PMC article. - The Therapeutic Potential of Exosomes from Mesenchymal Stem Cells in Multiple Sclerosis.
Kråkenes T, Sandvik CE, Ytterdal M, Gavasso S, Evjenth EC, Bø L, Kvistad CE. Kråkenes T, et al. Int J Mol Sci. 2024 Sep 24;25(19):10292. doi: 10.3390/ijms251910292. Int J Mol Sci. 2024. PMID: 39408622 Free PMC article. Review. - Advances and controversies in meningeal biology.
Betsholtz C, Engelhardt B, Koh GY, McDonald DM, Proulx ST, Siegenthaler J. Betsholtz C, et al. Nat Neurosci. 2024 Nov;27(11):2056-2072. doi: 10.1038/s41593-024-01701-8. Epub 2024 Sep 27. Nat Neurosci. 2024. PMID: 39333784 Review. - Truncated mini LRP1 transports cargo from luminal to basolateral side across the blood brain barrier.
Fritzen L, Wienken K, Wagner L, Kurtyka M, Vogel K, Körbelin J, Weggen S, Fricker G, Pietrzik CU. Fritzen L, et al. Fluids Barriers CNS. 2024 Sep 17;21(1):74. doi: 10.1186/s12987-024-00573-1. Fluids Barriers CNS. 2024. PMID: 39289695 Free PMC article. - Cerebrospinal fluid flow extends to peripheral nerves further unifying the nervous system.
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA Jr, Smith DE, Scott EA, Alvarez-Castanon JV, Baez Montalvo DE, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Ligocki AP, et al. Sci Adv. 2024 Sep 6;10(36):eadn3259. doi: 10.1126/sciadv.adn3259. Epub 2024 Sep 4. Sci Adv. 2024. PMID: 39231237 Free PMC article.
References
- J Cell Biol. 1968 Jun;37(3):621-32 - PubMed
- J Cell Biol. 1963 Oct;19:159-99 - PubMed
- J Cell Biol. 1965 Jun;25(3):Suppl:1-19 - PubMed
- J Cell Biol. 1965 Jun;25(3):Suppl:209-31 - PubMed
- J Cell Biol. 1965 Jul;26(1):263-91 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous