Electroosmosis in membranes: effects of unstirred layers and transport numbers. II. Experimental - PubMed (original) (raw)
Electroosmosis in membranes: effects of unstirred layers and transport numbers. II. Experimental
P H Barry et al. Biophys J. 1969 May.
Abstract
In an earlier paper, it was shown that the differences in transport numbers in membranes and adjacent solutions will result in a depletion and enhancement of the local concentration profiles at the appropriate interfaces. These should, in general, cause both current-induced volume flows and transient changes in membrane potential difference (PD). The predicted concentration changes were measured near an isolated segment of plant cell wall just after a current pulse. The current-induced volume flows observed were separated into a "transport number component" and an instantaneous, electroosmotic one for both cell walls and whole cells. For walls, the electroosmotic component contributed about 53 moles . Faraday(-1) to a total coefficient of 112 moles . Faraday(-1). For whole cells, the average electroosmotic component (for both hyperpolarizing and depolarizing currents) contributed about 38 moles . Faraday(-1) to a total of about 100 moles . Faraday(-1). There was good agreement between the magnitudes and time courses of the flows and membrane PD's predicted from the theory in the previous paper, and those measured in both cell walls and whole cells.
Similar articles
- Electroosmosis in membranes: effects of unstirred layers and transport numbers. I. Theory.
Barry PH, Hope AB. Barry PH, et al. Biophys J. 1969 May;9(5):700-28. doi: 10.1016/S0006-3495(69)86413-1. Biophys J. 1969. PMID: 5786317 Free PMC article. - THE ELECTROOSMOTIC EFFECTS ARISING FROM THE INTERACTION OF THE SELECTIVELY ANION AND SELECTIVELY CATION PERMEABLE PARTS OF MOSAIC MEMBRANES.
CARR CW, SOLLNER K. CARR CW, et al. Biophys J. 1964 May;4(3):189-201. doi: 10.1016/s0006-3495(64)86777-1. Biophys J. 1964. PMID: 14185581 Free PMC article. - Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.
Barry PH. Barry PH. Biophys J. 1998 Jun;74(6):2903-5. doi: 10.1016/S0006-3495(98)77996-2. Biophys J. 1998. PMID: 9635743 Free PMC article. - Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
Schafer JA, Patlak CS, Andreoli TE. Schafer JA, et al. J Gen Physiol. 1974 Aug;64(2):201-27. J Gen Physiol. 1974. PMID: 4846767 Free PMC article. - Forces and Flows at Cell Surfaces.
Honerkamp-Smith AR. Honerkamp-Smith AR. J Membr Biol. 2023 Dec;256(4-6):331-340. doi: 10.1007/s00232-023-00293-x. Epub 2023 Sep 29. J Membr Biol. 2023. PMID: 37773346 Free PMC article. Review.
Cited by
- The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis.
Zimmermann U, Steudle E. Zimmermann U, et al. J Membr Biol. 1974;16(4):331-52. doi: 10.1007/BF01872422. J Membr Biol. 1974. PMID: 4838001 No abstract available. - Electroosmosis in membranes: effects of unstirred layers and transport numbers. I. Theory.
Barry PH, Hope AB. Barry PH, et al. Biophys J. 1969 May;9(5):700-28. doi: 10.1016/S0006-3495(69)86413-1. Biophys J. 1969. PMID: 5786317 Free PMC article. - Pseudo-streaming potentials in Necturus gallbladder epithelium. II. The mechanism is a junctional diffusion potential.
Reuss L, Simon B, Cotton CU. Reuss L, et al. J Gen Physiol. 1992 Mar;99(3):317-38. doi: 10.1085/jgp.99.3.317. J Gen Physiol. 1992. PMID: 1588300 Free PMC article.
References
- Biophys J. 1965 Sep;5(5):669-86 - PubMed
- Aust J Biol Sci. 1966 Jun;19(3):385-98 - PubMed
- Biophys J. 1969 May;9(5):700-28 - PubMed
- J Physiol. 1958 Dec 30;144(3):505-24 - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous