An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels - PubMed (original) (raw)
An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels
D Tautz et al. Anal Biochem. 1983.
Abstract
A procedure for quick and simple elution of DNA from agarose gels is presented. After electrophoresis, bands of interest are cut out of the gel and the slices are equilibrated in a neutral salt buffer. The slices are then frozen and centrifuged through a filtration assembly whereby the DNA-containing buffer is squeezed out. The method is simple, quick, and suitable for the safe handling of small amounts of DNA (less than 1 microgram). The isolated DNA is susceptible to any enzymatic reaction and also to chemical sequencing. The method is most useful for rapid preparation of specifically end-labeled DNA fragments (e.g., for sequencing), but may also be utilized for any other preparative applications.
Similar articles
- Rapid isolation of high-molecular-weight DNA from agarose gels.
Pollman MJ, Zuccarelli AJ. Pollman MJ, et al. Anal Biochem. 1989 Aug 15;181(1):12-7. doi: 10.1016/0003-2697(89)90386-2. Anal Biochem. 1989. PMID: 2554757 - Direct hybridization of labeled DNA to DNA in agarose gels.
Purrello M, Balazs I. Purrello M, et al. Anal Biochem. 1983 Feb 1;128(2):393-7. doi: 10.1016/0003-2697(83)90391-3. Anal Biochem. 1983. PMID: 6303158 - A method for the recovery of DNA from agarose gels.
Tabak HF, Flavell RA. Tabak HF, et al. Nucleic Acids Res. 1978 Jul;5(7):2321-32. doi: 10.1093/nar/5.7.2321. Nucleic Acids Res. 1978. PMID: 673856 Free PMC article. - Isolation and purification of large DNA restriction fragments from agarose gels.
Moore D, Chory J, Ribaudo RK. Moore D, et al. Curr Protoc Immunol. 2001 May;Chapter 10:Unit 10.5. doi: 10.1002/0471142735.im1005s08. Curr Protoc Immunol. 2001. PMID: 18432696 Review. - A reassessment of several erstwhile methods for isolating DNA fragments from agarose gels.
Gao X, Zhang K, Lu T, Zhao Y, Zhou H, Yu Y, Zellmer L, He Y, Huang H, Joshua Liao D. Gao X, et al. 3 Biotech. 2021 Mar;11(3):138. doi: 10.1007/s13205-021-02691-1. Epub 2021 Feb 23. 3 Biotech. 2021. PMID: 33692931 Free PMC article. Review.
Cited by
- Isolation and characterization of the regulatory HEX2 gene necessary for glucose repression in yeast.
Niederacher D, Entian KD. Niederacher D, et al. Mol Gen Genet. 1987 Mar;206(3):505-9. doi: 10.1007/BF00428892. Mol Gen Genet. 1987. PMID: 3035346 - In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway.
Lamb HK, Bagshaw CR, Hawkins AR. Lamb HK, et al. Mol Gen Genet. 1991 Jun;227(2):187-96. doi: 10.1007/BF00259670. Mol Gen Genet. 1991. PMID: 1648168 - Sequence specificity of Bacillus subtilis DNA gyrase in vivo.
Bashkirov VI, Zvingila DJ. Bashkirov VI, et al. Genetica. 1991;85(1):3-12. doi: 10.1007/BF00056101. Genetica. 1991. PMID: 1663896 - Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence.
Kaletta C, Entian KD, Kellner R, Jung G, Reis M, Sahl HG. Kaletta C, et al. Arch Microbiol. 1989;152(1):16-9. doi: 10.1007/BF00447005. Arch Microbiol. 1989. PMID: 2764678 - The integrated state of the rolling-circle plasmid pTB913 in the composite Bacillus plasmid pTB19.
Oskam L, Hillenga DJ, Venema G, Bron S. Oskam L, et al. Mol Gen Genet. 1992 Jun;233(3):462-8. doi: 10.1007/BF00265444. Mol Gen Genet. 1992. PMID: 1320190
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources