A new theoretical index of biochemical reactivity combining steric and electrostatic factors. An application to yeast tRNAPhe - PubMed (original) (raw)
A new theoretical index of biochemical reactivity combining steric and electrostatic factors. An application to yeast tRNAPhe
R Lavery et al. Biophys Chem. 1984 Mar.
Abstract
A new theoretical index of the chemical reactivity of sites within macromolecules is developed, which combines both steric and electrostatic factors. It is applied to the study of yeast tRNAPhe and the results obtained are compared with known experimental reactivities. A comparison indicates the superiority of the new index over the sole use of the surface accessibility.
Similar articles
- A theoretical study of the effect of structural variations on the biochemical reactivity of yeast tRNAPhe and yeast tRNAAsp.
Furois-Corbin S, Pullman A. Furois-Corbin S, et al. Biophys Chem. 1985 Jun;22(1-2):1-10. doi: 10.1016/0301-4622(85)80020-x. Biophys Chem. 1985. PMID: 3896330 - The electrostatic molecular potential of yeast tRNAPhe. (I). The potential due to the phosphate backbone.
Lavery R, Pullman A, Pullman B. Lavery R, et al. Nucleic Acids Res. 1980 Mar 11;8(5):1061-79. doi: 10.1093/nar/8.5.1061. Nucleic Acids Res. 1980. PMID: 7003554 Free PMC article. - The electrostatic molecular potential of tRNAPhe. IV. The potentials and steric accessibilities of sites associated with the bases.
Lavery R, Pullman A, Pullman B, de Oliveira M. Lavery R, et al. Nucleic Acids Res. 1980 Nov 11;8(21):5095-111. doi: 10.1093/nar/8.21.5095. Nucleic Acids Res. 1980. PMID: 7003548 Free PMC article. - [Structure of yeast tRNAPhe molecule].
Ciesiołka J, Krzyzosiak WJ. Ciesiołka J, et al. Postepy Biochem. 1984;30(1-2):71-106. Postepy Biochem. 1984. PMID: 6397754 Review. Polish. No abstract available. - Complementary-addressed (sequence-specific) modification of nucleic acids.
Knorre DG, Vlassov VV. Knorre DG, et al. Prog Nucleic Acid Res Mol Biol. 1985;32:291-320. doi: 10.1016/s0079-6603(08)60352-9. Prog Nucleic Acid Res Mol Biol. 1985. PMID: 2418466 Review. No abstract available.
Cited by
- Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions.
Twittenhoff C, Brandenburg VB, Righetti F, Nuss AM, Mosig A, Dersch P, Narberhaus F. Twittenhoff C, et al. Nucleic Acids Res. 2020 Jul 9;48(12):e71. doi: 10.1093/nar/gkaa404. Nucleic Acids Res. 2020. PMID: 32463449 Free PMC article. - Influence of nucleotide identity on ribose 2'-hydroxyl reactivity in RNA.
Wilkinson KA, Vasa SM, Deigan KE, Mortimer SA, Giddings MC, Weeks KM. Wilkinson KA, et al. RNA. 2009 Jul;15(7):1314-21. doi: 10.1261/rna.1536209. Epub 2009 May 20. RNA. 2009. PMID: 19458034 Free PMC article. - Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions.
Choudhary K, Deng F, Aviran S. Choudhary K, et al. Quant Biol. 2017 Mar;5(1):3-24. doi: 10.1007/s40484-017-0093-6. Epub 2017 Mar 30. Quant Biol. 2017. PMID: 28717530 Free PMC article. - Chemical and computer probing of RNA structure.
Kolchanov NA, Titov II, Vlassova IE, Vlassov VV. Kolchanov NA, et al. Prog Nucleic Acid Res Mol Biol. 1996;53:131-96. doi: 10.1016/s0079-6603(08)60144-0. Prog Nucleic Acid Res Mol Biol. 1996. PMID: 8650302 Free PMC article. Review. - DMS footprinting of structured RNAs and RNA-protein complexes.
Tijerina P, Mohr S, Russell R. Tijerina P, et al. Nat Protoc. 2007;2(10):2608-23. doi: 10.1038/nprot.2007.380. Nat Protoc. 2007. PMID: 17948004 Free PMC article.