A new theoretical index of biochemical reactivity combining steric and electrostatic factors. An application to yeast tRNAPhe - PubMed (original) (raw)
A new theoretical index of biochemical reactivity combining steric and electrostatic factors. An application to yeast tRNAPhe
R Lavery et al. Biophys Chem. 1984 Mar.
Abstract
A new theoretical index of the chemical reactivity of sites within macromolecules is developed, which combines both steric and electrostatic factors. It is applied to the study of yeast tRNAPhe and the results obtained are compared with known experimental reactivities. A comparison indicates the superiority of the new index over the sole use of the surface accessibility.
Similar articles
- A theoretical study of the effect of structural variations on the biochemical reactivity of yeast tRNAPhe and yeast tRNAAsp.
Furois-Corbin S, Pullman A. Furois-Corbin S, et al. Biophys Chem. 1985 Jun;22(1-2):1-10. doi: 10.1016/0301-4622(85)80020-x. Biophys Chem. 1985. PMID: 3896330 - The electrostatic molecular potential of yeast tRNAPhe. (I). The potential due to the phosphate backbone.
Lavery R, Pullman A, Pullman B. Lavery R, et al. Nucleic Acids Res. 1980 Mar 11;8(5):1061-79. doi: 10.1093/nar/8.5.1061. Nucleic Acids Res. 1980. PMID: 7003554 Free PMC article. - The electrostatic molecular potential of tRNAPhe. IV. The potentials and steric accessibilities of sites associated with the bases.
Lavery R, Pullman A, Pullman B, de Oliveira M. Lavery R, et al. Nucleic Acids Res. 1980 Nov 11;8(21):5095-111. doi: 10.1093/nar/8.21.5095. Nucleic Acids Res. 1980. PMID: 7003548 Free PMC article. - [Structure of yeast tRNAPhe molecule].
Ciesiołka J, Krzyzosiak WJ. Ciesiołka J, et al. Postepy Biochem. 1984;30(1-2):71-106. Postepy Biochem. 1984. PMID: 6397754 Review. Polish. No abstract available. - Complementary-addressed (sequence-specific) modification of nucleic acids.
Knorre DG, Vlassov VV. Knorre DG, et al. Prog Nucleic Acid Res Mol Biol. 1985;32:291-320. doi: 10.1016/s0079-6603(08)60352-9. Prog Nucleic Acid Res Mol Biol. 1985. PMID: 2418466 Review. No abstract available.
Cited by
- Probing the structure of RNAs in solution.
Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. Ehresmann C, et al. Nucleic Acids Res. 1987 Nov 25;15(22):9109-28. doi: 10.1093/nar/15.22.9109. Nucleic Acids Res. 1987. PMID: 2446263 Free PMC article. Review. - Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution.
Hector RD, Burlacu E, Aitken S, Le Bihan T, Tuijtel M, Zaplatina A, Cook AG, Granneman S. Hector RD, et al. Nucleic Acids Res. 2014 Oct 29;42(19):12138-54. doi: 10.1093/nar/gku815. Epub 2014 Sep 8. Nucleic Acids Res. 2014. PMID: 25200078 Free PMC article. - Structural elements in RNA.
Chastain M, Tinoco I Jr. Chastain M, et al. Prog Nucleic Acid Res Mol Biol. 1991;41:131-77. doi: 10.1016/s0079-6603(08)60008-2. Prog Nucleic Acid Res Mol Biol. 1991. PMID: 1715587 Free PMC article. Review. - Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions.
Choudhary K, Deng F, Aviran S. Choudhary K, et al. Quant Biol. 2017 Mar;5(1):3-24. doi: 10.1007/s40484-017-0093-6. Epub 2017 Mar 30. Quant Biol. 2017. PMID: 28717530 Free PMC article. - Nature of guanine oxidation in RNA via the flash-quench technique versus direct oxidation by a metal oxo complex.
Holcomb DR, Ropp PA, Theil EC, Thorp HH. Holcomb DR, et al. Inorg Chem. 2010 Feb 1;49(3):786-95. doi: 10.1021/ic9008619. Inorg Chem. 2010. PMID: 20038124 Free PMC article.