Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae - PubMed (original) (raw)
. 1981 Mar 10;256(5):2079-82.
- PMID: 6450764
Free article
Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae
Y Ohsumi et al. J Biol Chem. 1981.
Free article
Abstract
The mechanism of transport of basic amino acids into vacuoles of cells of the yeast Saccharomyces cerevisiae was investigated in vitro. Right-side-out vacuolar membrane vesicles were prepared from purified vacuoles. Arginine was taken up effectively by the vesicles only in the presence of ATP, not in the presence of ADP or AMP-adenosyl-5'-yl imidodiphosphate. It was exchangeable and was released completely by a protonophore, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847). The transport required Mg2+ ion but was inhibited by Cu2+, Ca2+, or Zn2+ ions. The transport activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD), but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked arginine uptake completely, but valinomycin had no effect. ATP-dependent formation of a delta pH across the membrane vesicles was shown by quenching of 9-aminoacridine fluorescence. These results indicate that DCCD-sensitive, Mg2+-ATPase of vacuolar membranes is essential as an energy-donating system for the active transport, and that an electrochemical potential difference of protons is a driving force of this basic amino acid transport. Arginine transport showed saturation kinetics with a Km value of 0.6 mM and the mechanism was well explained by an H+/arginine antiport.
Similar articles
- Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae.
Ohsumi Y, Anraku Y. Ohsumi Y, et al. J Biol Chem. 1983 May 10;258(9):5614-7. J Biol Chem. 1983. PMID: 6343390 - Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae.
Kakinuma Y, Masuda N, Igarashi K. Kakinuma Y, et al. Biochim Biophys Acta. 1992 Jun 11;1107(1):126-30. doi: 10.1016/0005-2736(92)90337-l. Biochim Biophys Acta. 1992. PMID: 1319738 - Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae.
Kakinuma Y, Ohsumi Y, Anraku Y. Kakinuma Y, et al. J Biol Chem. 1981 Nov 10;256(21):10859-63. J Biol Chem. 1981. PMID: 6116710 - Active transport of Ca2+ in bacteria: bioenergetics and function.
Devés R, Brodie AF. Devés R, et al. Mol Cell Biochem. 1981 Apr 27;36(2):65-84. doi: 10.1007/BF02354906. Mol Cell Biochem. 1981. PMID: 6113540 Review. - The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.
van der Rest ME, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN. van der Rest ME, et al. Microbiol Rev. 1995 Jun;59(2):304-22. doi: 10.1128/mr.59.2.304-322.1995. Microbiol Rev. 1995. PMID: 7603412 Free PMC article. Review.
Cited by
- Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane.
Cools M, Lissoir S, Bodo E, Ulloa-Calzonzin J, DeLuna A, Georis I, André B. Cools M, et al. PLoS Genet. 2020 Aug 10;16(8):e1008966. doi: 10.1371/journal.pgen.1008966. eCollection 2020 Aug. PLoS Genet. 2020. PMID: 32776922 Free PMC article. - Acidification of the lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins.
Rothman JH, Yamashiro CT, Raymond CK, Kane PM, Stevens TH. Rothman JH, et al. J Cell Biol. 1989 Jul;109(1):93-100. doi: 10.1083/jcb.109.1.93. J Cell Biol. 1989. PMID: 2526133 Free PMC article. - pH-dependent localization of Btn1p in the yeast model for Batten disease.
Wolfe DM, Padilla-Lopez S, Vitiello SP, Pearce DA. Wolfe DM, et al. Dis Model Mech. 2011 Jan;4(1):120-5. doi: 10.1242/dmm.006114. Epub 2010 Oct 19. Dis Model Mech. 2011. PMID: 20959629 Free PMC article. - Interaction among Btn1p, Btn2p, and Ist2p reveals potential interplay among the vacuole, amino acid levels, and ion homeostasis in the yeast Saccharomyces cerevisiae.
Kim Y, Chattopadhyay S, Locke S, Pearce DA. Kim Y, et al. Eukaryot Cell. 2005 Feb;4(2):281-8. doi: 10.1128/EC.4.2.281-288.2005. Eukaryot Cell. 2005. PMID: 15701790 Free PMC article. - A highly selective alkaloid uptake system in vacuoles of higher plants.
Deus-Neumann B, Zenk MH. Deus-Neumann B, et al. Planta. 1984 Sep;162(3):250-60. doi: 10.1007/BF00397447. Planta. 1984. PMID: 24253097
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous