Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier - PubMed (original) (raw)

. 1984 Aug 25;259(16):10614-22.

Free article

Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier

P J Meier et al. J Biol Chem. 1984.

Free article

Abstract

The driving forces for taurocholate transport were determined in highly purified canalicular (cLPM) and basolateral rat liver plasma membrane (LPM) vesicles. Alanine transport was also examined for comparison. Inwardly directed Na+ but not K+ gradients transiently stimulated [3H]taurocholate (1 microM) and [3H]alanine (0.2 mM) uptake into basolateral LPM 3-4- fold above their respective equilibrium values (overshoots). Na+ also stimulated [3H]taurocholate countertransport and tracer exchange in basolateral LPM whereas valinomycin-induced inside negative K+ diffusion potentials stimulated alanine uptake but had no effect on taurocholate uptake. In contrast, in the "right-side out" oriented cLPM vesicles, [3H]taurocholate countertransport and tracer exchange were not dependent on Na+. Efflux of [3H]taurocholate from cLPM was also independent of Na+ and could be trans-stimulated by extra-vesicular taurocholate. Furthermore, an inside negative valinomycin-mediated K+ diffusion potential inhibited taurocholate uptake into and stimulated taurocholate efflux from the cLPM vesicles. These studies provide direct evidence for a "carrier mediated" and potential-sensitive conductive pathway for the canalicular excretion of taurocholate. In addition, they confirm the presence of a possibly electroneutral Na+-taurocholate cotransport system in basolateral membranes of the hepatocyte.

PubMed Disclaimer

Publication types

MeSH terms

Substances